Lec. 22-e-useful remarks

Tuesday, July 30, 2024 2:04 AM

^a If
$$U(2n; 1) - L(2n; 1) \rightarrow 0$$
 as $n \rightarrow \infty$
then U $U(2n; 1) \rightarrow U(1)$
 $@$ $L(2n; 1) \rightarrow L(1)$
 $@$ $L(2n; 1) \rightarrow L(1)$
 $@$ x^{2} , (os(n), sin(n), e^{x}
Population: If $f \in U^{((n, 1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n, 1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n, 1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n, 1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n, 1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n, 1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n+1)}) \Rightarrow f \in \mathbb{J}^{(n+1)}$
 $Population: If $f \in U^{((n+1)}) = f(n) = f($$$$$$$$