Lec. 19-b-Rules for differentiation

Wednesday, July 24, 2024

10:49 AM

let
$$x_o t (a_{,b})$$
, f,g are different; $able (G) x_o$

then (i) $f \neq A, \beta t R$ $(Af, \beta g) = Af'(x_o) + \beta g'(x_o)$

Product $f(e^{(x_o)})$ $(f \cdot g)'(x_o) = f'(x_o)g(x_o) - g'(x_o)f(x_o)$
 $g(x)^2$

$$\frac{d}{duotient Rule"} 3.) \left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - g'(x_0)f(x_0)}{g(x_0)^2}$$

$$\frac{g(x_0) + Q}{g(x_0)^2}$$

let $f: Ta, 67 \longrightarrow \mathbb{R}$ a point $C: \omega$ called a local max provided that $\exists E > 0$ S.t. $\forall x \in (C-E, C+E) \cap Ta, 67$ $f(C) \gg f(x)$

A local non is similarly defined $f(c) \leq f(x)$

Theorem: let $f \in C^0(Ia,bI)$ S.t., f'(x) exists $\forall x \in (a,b)$ if $\exists local max or local man <math>c \in (a,b) \Rightarrow f'(c) = c$ you know this

Consider proving 1 sided differentiation