12-1: Alternating Series

Tuesday, July 9, 2024 1:19 PM

Generalize this $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} ((-1)^{n+1})$ Claim: This series actually converges on spite of appearing to have hormonic anoget series imponent) Because Consider Spig Str. by >0 Fn $\Rightarrow b_n > b_{n+1}$ Thus the bollowing them the as n > 00 as n > 00+ The alterniting series = 0 (-1) not by Converges n>1 (-1) by Rey Points in the Proof (1) $S_2 \angle S_4 \angle S_6 \angle \cdots$ even Pantial Sums increase (2) $S_1 > S_3 > \cdots > S_{2n+1} > \cdots$ odd Partial shus decrease (3) $S_{2j} \angle S_{2j} \angle S_{2j+1}$ If 1, 2, 3 hold $\rightarrow S_{2j} \perp S_{2K+1} \neq j, K$ that is: any even pantial sum is <u>IESS</u> than any other one for instand $S_{20,000} < S_{1} = 6,$ $\int (1), (2) \xrightarrow{3}{3} \xrightarrow{2} \int \sum_{j \neq j} \sum_{j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j \neq j} \int \sum_{j \neq j \neq j \neq j$ then II = Iit $\int_{1}^{\infty} I_{j} \neq 0$

Claim: This intersections contains exactly are point. recall D, D, 3) above $|\mathcal{I}_{i}| = \int_{2j+1}$ $\Rightarrow S_1 = b_1 - b_2 + b_3 - b_4 + \cdots + (-1)^{j+1} b_1$ flerce $S_{1} = b_{1} > 0$, $S_{2} = b_{1} - b_{2} > 0$, $S_{3} = b_{1} - b_{2} + b_{3}$ $S_3 = 6_1 + (6_3 - 6_2) < b_1 = S_1$ $S_3 = 0$, $S_3 = 0$, $S_3 = 5$, $C_0 = 3$, $S_5 = 5$, $-6_4 + 6_5$ < 0SELSELS, Econfirms rule 2 ->> S5 < S3 ... NGST: WIS - Even Partial Suns increase. (Ne D) " · Sy > Sz $flus S_{2j+2} = S_{2j} + b_{2j+1} - b_{2j+2}$: S2j+2 > S2j Confirming whe D Sej L Szjil rule 3 Next S2j+b2j+1 ____ >0 $b_1 - b_2 + b_3 - b_4 - b_1 - b_2 + b_3 - b_4 - b_1 - b_2 + b_2 - b_1 - b_1$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \xrightarrow{} \end{array} \begin{array}{c} \begin{array}{c} \end{array} \xrightarrow{} \end{array} \xrightarrow{}$ => any even Partial run 25 L ang odd Partid can Thus $I_i := \begin{bmatrix} S_{2i}, S_{2i+1} \end{bmatrix}$ M. Pr. Un of the

Mervil yous to jzero.
$$2j+1 = 0$$
 the length of the
so $\int_{j\neq 1}^{\infty} I_j = \{S_{\infty}\}$ the Real #s
 $S_{\infty} = S_{\nu p}(S_{2j}) = I_n f(S_{2j+1})$
 $S_{\infty} = S_{2j} \leq S_{2j} \leq S_{2j+1} = S_{2j} = S_{2j+1}$
 $S_{\infty} = S_{\infty} - S_{2j} \leq S_{2j+1} = S_{2j} = S_{2j+1}$
 $S_{\infty} = S_{\nu p}(S_{2j}) \leq S_{2j+1} = S_{2j} = S_{2j+1}$
 $S_{\infty} = S_{\nu p}(S_{2j}) \leq S_{2j+1} = S_{2j} = S_{2j+1}$
 $S_{\infty} = S_{\nu p}(S_{2j}) \leq S_{2j+1} = S_{2j} = S_{2j+1} = S_{2j}$
 $S_{\infty} = S_{\nu p}(S_{2j}) \leq S_{2j+1} = S_{2j} = S_{2j+1} = S_{2j}$
 $S_{\infty} = S_{\nu p}(S_{2j}) \leq S_{2j+1} = S_{2j} = S_{2j+1} = S_{2j}$
 $S_{\omega} = S_{\omega} = S_{\omega} \leq S_{\omega} \leq S_{2j+1} = S_{2j} = S_{2j+1} = S_{2j}$
 $S_{\omega} = S_{\omega} \leq S_{\omega} = S_{2j} \leq S_{2j+1} = S_{2j} = S_{2j+1} = S_{2j}$
 $S_{\omega} = S_{\omega} \leq S_{\omega} = S_{2j} \leq S_{2j+1} = S_{2j} = S_{2j+1} = S_{\omega} = S_{\omega}$