Wednesday, January 25, 2023

Wednesday, January 25, 2023 8:06 AM

- Reading Quiz due before Class on fudony Sign up on Piazza

- 1.) what is proof
- 2.) how doe math prove things....

Fer is Conjecture

There are no positive Integers

a,b,c & satisfy an+bn = ch

Y Intege N>2

EZ a,b,LEZ>0 St. an+bn=cn }

a + b = C Suppose n=1

a= 1, b=2, C=3 (proof by contradiction

a2 + b2 = (2

Let a = 3, b=4 (=5 -> 32+42 =52 9+16-25 V

1637 - Fermat said he can prove it June 1993 - Wiles released proof Sept 1993 - an error was found Sept 1994 - a corrected proof released 1995 - the final proof is published

Flowchart:

Theorem:

Conjecture / Proposition:

A mathematical statement that we do not yet know is true/false.

Definitions:

a statement of notation or terminology that we agree upon. (e.g. "positive integers" are numbers 1,2,3,4......inf.)

Axioms:

a statement in mathematics we accept to be true but we can't prove it. (a statement taken to be true) (e.g. Axiom of equality) x = x, for all x.

Theorem: conjecture which has been proved.

(e.g. an odd integer x odd integer = odd integer)

Lemma: a smaller (less important) theorem {a stepping stone}

Corollary: Less important theorem that is proved as a direct result from the Theorem.

Friday, January 27, 2023

Friday, January 27, 2023 9:53 AM

Properties of real numbers (R)

P.1) Associativity of Addition
$$a + (b+c) = (a+b) + c$$

P.3) Existance of additive inverse
$$a+(-a)=(-a)+a=0$$

P.4) Communtativity of additive
$$a+b=b+a$$

P.5) associativity of Products
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

P.7) Existance of inverse
$$a \cdot (a^{-1}) = (a^{-1}) \cdot a = \frac{a}{a} = 1$$

PC Posthe R

in at P

axi ons addition _ & mu/tiplicate of 1R 4's

& axrams g in equalities

 \Rightarrow |a+b| = |a| + |b|

```
ii RHS
    |a|+|b|=a-b
|a+b|=(a+b-y+a+b>0)
|a+b|=(a+b-y+a+b>0)
|a+b|=(b5)
         we want to show a+b \le a-b
                            b < -b => b < 0
    (ib) we want to show -a-6 & a-6
Defr (Even)
       an integer X is said to be even iff there exists an Integer a, S.t.
        an integer X is said to be odd iff there exists an Integer a, S.E.
                 \chi = 2a + 1
Conjecture II \times 8 y are positive odd Integers then \times y is also a positive add
    \exists a,b \in \mathbb{Z} St. y = 2b+1 by definition of odd
   By Lubstitution \chi \cdot y = (2a+1) \cdot (2b+1)
        by distribine X.y = (4ab + 2a+ 2b+1)
                       \chi_{y} = 2(2ab+a+b) + 1
   let x.y= Z
                          Z= 2c +1 which is old by definition
   lot 2ab+a+b=C
```

Monday, January 30, 2023

Monday, January 30, 2023 9:52 AM

Deff A set in maths is a collection of object! on elements e.g. $S:=\{\xi-1,0,1,Red,A\}$ $T:=\{\xi\} \text{ Blue, B, 2}\}$ $R:=\{\xi-1,0,0,A,Red\}$

Def two sets are equilibrant of they contain the same element, ignoring repetition order

-1 ES L belongs to

Deft A set is called a subset of another set R if all elements in S are also in R S C R

Defn A subjet SBR is a proper subset if they're not equivalent SCR

N natural #5

Z integos

Q Rational & q: P, q EZ st. 9+0}

R - real numbers

C - Complex

Wednesday, February 1, 2023 9:52 AM

Defr Set A&B

(i) Union of A & B is the set of elements in A or B

AUB:= {x: XEA or XEB}

(ii) Intersection of A and B is elements in both A & B

ANB= {x: x + A and x + B}

(iii) Complement of A in B is the set of elements in B but not in A

BA = SX | X + B and X + A Z

(iv) Disjoint: Suppose $A \cap B = \emptyset = \{3 = \text{NVLL}\}$ $\longrightarrow A \in B$ are disjoint

Logic theory

- Consider P&Q are boolean indicators
That is, P&Q can be either True (T) or Falle (F)

NOT 7 P 7P

AND N

OR V

FT

	Q
TTTT	-,-
1 2 2	
E I F	
FFF	

	P	Q	PVQ
	7	Т	7
(T	٦	†
	F	<u> </u>	1 T
1	F	F	F
-	-		

Implication =>
1 P then Q P Q P+Q
Bijedian E> TFFF F T T F T T F T T F T T
PQPHQ FFT
7 7 7
T T T T T T T T T T T T T T T T T T T
FTF
F F T
0-10
- sequence of true statements morning from hypothesis to conclusion
- serice of time of time of the overing in many thought to conclusion
₹ P → true 5
* Proof by exhastion/ brute from
is when you prove every possibility
Il Proof by induction: prove a conjecture for a discrete set of cases
we want to Show $2^2 + 2^2 + 3^2 - \dots = \frac{n}{2}i^2 = n(n+1)(2n+1)$
6
Base ause on=1 - True
assume n=1. {s True IH.
X (K+1) (2K +1)
$\star \sum_{k=0}^{\infty} \overline{k}^2 = \frac{K(k+1)(2k+1)}{C}$
Prove for $n = K+1$ $\sum_{k+1}^{K+1} 2^{k+1}$
for V - 1.11
1
$241S = \frac{K}{2}i^{2} + (K+1)^{2} = \frac{K(K+1)(2K+1)}{6} + (K+1)$
$= \frac{(\kappa+1)}{(\kappa+1)} \left\{ \kappa(2\kappa+1) + \kappa+1 \right\}$
6

_	(K+1)(K+2) (2K+3)
	6

By Induction in

Indirect Proof

Start by assuming negation

1.) Proof by Contradion
Here attement is falle and show we find
Contradictor

More PI tre

proof suppose of is true but that is a contradictor

Contra positile

Conjectue P -> Q

proof 7Q ->

Monday, February 6, 2023

Monday, February 6, 2023 9:55 AM

 Q_3 Let χ , χ t R

Show it x & y are rational then x + y are irr

Suppose x=0 and y=1 both are rational

then x + g = 0 + 1 = 1Since is rational this theory is false by counter example \Box

Euleid Conjecture - (Fernat / Andrew Wiles)

Let a,....an b, n, K be positive Z

Then if $a_i^k + \dots + a_n^k = b^k \implies n > k$

Proven False - by Counter Example

$$\frac{1}{a} + \frac{1}{b} = \frac{2}{a+b}$$

 $\frac{b}{ab} + \frac{a}{ab} = \frac{2}{a+b}$

$$\frac{b+a}{ab} = \frac{2}{a+b}$$

2ab = 6 + a(a+b) $2ab = b + a^{2} + ab$ $ab = b + a^{2}$ $ab - a^{2} = b$

Deff: A function is a collection of ordered pairs of ordered pairs of numbers S.t.

If (a, b) and (a, c) are in the collection then b = c

(a, b) is described by the function

 $a \xrightarrow{f} b$ or f(a) = b \longrightarrow to

Domain of a function is the Set of all a for which there is a b S.E. (a,b) lives in collection

> Codoman of a funda is the sot of possible values lives in the collection

Donas (o. Donas

not a functor

Donw

15 a function

not a function

Define Let f', A o B be a function (1) the image of set $X \subseteq A$ is defined as $f(x) := \{ f(a) \in B \mid a \in X \}$

2) the pre-image of a set Y = B
is defined as fil(Y):= {acA | f(a) ∈ Y}

y is the freimage

 $f: A \to B$ $\Re Y \subseteq B \longrightarrow f'(y) \subseteq A$

Then $f(f^{-1}(r)) \neq Y$

Then

$$Im(4) = f(4) = {24}$$

if
$$Y \leq B$$
 $y = \{ 4,5 \}$
 $f'(y) = \{ 1, 2,3 \}$
if $y = \{ 5 \}$ then $f'(y) = \emptyset$

 $f(f'(y)) = f(\{1, 2, 3\}) = \{4\} + \{4, 5\}$

Det Det Descripedire (onto)

if
$$f(A) = B$$

Image = Codomain

- 2 f x injectie (one to -one) uniqueness \overrightarrow{i} $f(x) = f(y) \Longrightarrow x = y$
- 3 til bijectile if it is conjective & injectile

$$h(x) = \frac{5x}{x^2 + 4}$$

boman = A Codoman = A image of h max @ x = 2 lim h(x) = 0 min @ x = -2

 $\begin{array}{c} (3) \\ h(-2) \leq y \leq h(0) \\ -5/4 \leq y \leq \frac{5}{4} \end{array}$

not injective or surjective

Friday, February 10, 2023

Friday, February 10, 2023 10:00 AM

Deff Let f: A - 13 be functional g: c -> 1)

1) Addition (f+g)(x) := f(x) + g(x)Where $x \in Dom(f+g)$ which is $A \cap C$

x & S An C}

XEA 1 XEC

 $(f \cdot g) (x) := f(x) \cdot g(x)$ (2) Product where X + Dom (f + g)

 $(f/g)(x) = \frac{f(x)}{g(x)} = f(x) \cdot g^{-1}(x)$

Where $\chi \in Pom(f/g) := A \cap C, x: g(x) \neq 0$

(4) Composition (fog) (x) = f(g(x))

where x + Pan (fog) = {x + C: g(x) + A}

Suppose $g(x) = -x^2$

(fog)(x) = f(g(x)) = V-x2

 $Img(g) = x \leq 0$ Dom(f) = X>0

Thus pon (fog) = { 0} So f(g(x)), 4 x & Dom(fog) = 0

 $f(x) = C \leftarrow Constant function$ $g(x) = x \leftarrow linear chantity$

 $h(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots \cdot a_o$

T foly nomial

9: (= = =) -> R

g(x)= tanx

Pom(g) = (-1/2 1/2)

Ing = IR

if 6 pom(f) = Im(f) than f is onto

fi is not inject so

is not injectus q'i injectus q's bijectie
is not surjectus q'i Surjective

Problem / Let f: A > B be a function $C,D\subseteq A$

Prove $C \subseteq D \Longrightarrow f(c) \subseteq f(b)$

assume CED

That is $\forall x, \chi \in C \Rightarrow \chi \in D$

for yt fc) Show yt f(D)

= = f(x)

 $\Rightarrow x \neq b \Rightarrow f(x) \in f(b)$

P2 Let $f: A \rightarrow B$ be a fund $U \subseteq B$ Show $f(f'(U)) \subseteq U$ Step 1 By polarin $U \subseteq B$ means $V \times_{i} \times EV \Rightarrow \chi \in B$ Let $Y \in f(f'(U))$ then we want to show $y \in U$ by defining $Y \in f(A) \Rightarrow \exists_{x \in A} \text{ s.t. } y = f(x)$ So $\exists_{x} \in f'(U) \text{ s.t. } y = f(x)$ by defining $\chi \in f'(A) \Rightarrow \exists_{y \in A} \text{ s.t. } \chi = f(y)$ So $\exists_{z} \in U \text{ s.t. } \chi = f(y)$ Finally $y = f(x) = \chi \Rightarrow f(f'(U)) \subseteq U$ Which is what we unit to show B

Math 421 Page 16

Monday, February 13, 2023 9:58 AM A dolution , I is a mapping from Domain A to Co. Domain B $f: A \rightarrow B$ St. if $f(a) = b \ 8 \ f(a) = C \ for a \in A \ b \in B$ then b=C Image of a set $X \subseteq A$ is the set $f(x) = \{ f(x) \notin A : \chi \notin X \}$ PreImye of a let Y = B is the set f'(Y):= {x & A: fax) & Y} · A function is said to be sujective (anto) fu) = B i.e. YytB, 3xtA st. y= f(x) - A function is said to be Injective (one to one) Let a, b & A then $f(a) = f(b) \Rightarrow a = b$ Bijecton 15 Swjecture / Injective 1. $f:A \to B$ and $C,D \subseteq A$ then $C \subseteq D \Rightarrow f(C) \subseteq f(D)$ (ie. if "x +c = x + D" then "x + f(x) = x + f(x)") 2. f: A + B and U = B Then $f(\xi^{-1}(v)) \leq V \leq f(f^{-1}(v))$ E equilated (i.e. "xef(f'(v)) => xel " } Let f: H→B & g: B→ C Then it I and of one bijecture then fog is bijectle we want to Show $\forall x, y \in A \quad (qof)(x) = (qof)(y) \Rightarrow x = y$ Let x, y & A

1+1.5. (90+)(x) = (90+)(y)

Let X, YEH 1.H.S. (gof) (x) = (gof) (y) => g(fax) = g(fay) & def of composite $\Rightarrow f(x) = f(y) \qquad \qquad \downarrow \qquad g \quad \text{injective}$ $\Rightarrow \qquad \times = y \qquad \qquad \downarrow \qquad f \quad \text{is injective}$ Step 2 Svijectre Le. "+yEC, FXEA St. y = (got) (x)" Lot yEC LH.S. => FINE B St. y = g(w) & g is surjective \Rightarrow $\exists x \in A$ s.t. $\exists (x) = w$ 2 f is surjective \Rightarrow $y = g(f(x)) = (g \circ f)(x)$ Left composite Deff Let a, b ER and a = b Gen interval is (a,b):= { X | a<x Closed interval is [a, b]:= \(\int \times \) \(\alpha \int \times \) \(\alpha \int \times \) Infinite interal $(a, \infty) := \{x \mid a \land x \}$ (-∞b]:{x | x ≤ b 3 For example Interval of radius E> 0 Centered at a is (a-E, a+E) != {x | 1x-a| = E}

Distance; is the length of a segment between two points $|a-b| = \sqrt{(a-b)^2}$

Wednesday, February 15, 2023 9:56 AM

Math 421 Page 20

$$f(x) = \begin{cases} 1 & x \neq Q \\ 0 & x \neq Q \end{cases} G(x) = \begin{cases} (x_1) & x \neq Q \end{cases} U$$

$$\begin{cases} (x_2, 0) & x \neq Q \end{cases}$$

 $\leq M\left(\frac{1}{x}\right)$

Horizontal Line Test

Let f: A->B be a function

With graph G(f) \in A x B

Let L(b) be a horizontal line along $y = b \in B$ That is, L(b) = $\{(x,b) \mid x \in A\}$

1.) If f is injective \iff \forall b \in B. G(f) \cap L(b) has at most one point.
2.) if f is surjective \iff \for b \in B G(f) \cap L(b) has at least one point
3.) f is bijective \iff \forall b \in B G(f) \cap \L(b) has only one point.

Th^m :	annot approach tw $(x) = L_1 \& limit x$	ro limits					
If $limit x \rightarrow a f$	$f(x) = L_1 \& limit x$	$\alpha \to a f(x) = L_2$	$\Rightarrow L_1 = L_2$				

MATH 421 ST-2023: Problem Sheet 4

February 20, 2023

Math 421: Problem Sheet 4

Deadline: Feb. 24th at 11:59pm

Solutions to this problem sheet must be typed up in LATEX and uploaded to Canvas as PDFs. Some BTFX resources can be found here. Please contact the instructor (Dr Thomas Chandler, tgchandler@wisc.edu) via Canvas or email, if there are any problems uploading the solutions.

1. Graph plots [8 points]

Consider the following graphs of a function f:D

For each graph, answer the following questions (no proof is needed)

(i) What is the domain of f? (ii) What is the image of f?

2. Graph manipulation [12 points]

Let f and g be functions and $c \in \mathbb{R}$. Describe the graph of g in terms of the graph of f in the following cases:

(a) g(x) = f(x) + c(b) g(x) = f(x+c)(c) g(x) = f(x+c)

(a)
$$g(x) = f(x) + c$$
 (b) $f(x) = f(x)$

in the following cases:

(a)
$$g(x) = f(x) + c$$

(b) $g(x) = f(x+c)$

(c) $g(x) = f(x)$

(d) $g(x) = f(x)$

(e) $g(x) = f(|x|)$

(f) $g(x) = |f(x)|$

(g) $g(x) = f(|x|)$

Note that it may be important to distinguish between $c > 0$, $c = 0$, and $c < 0$.

(a) $g(x) = f(x)$

(b) $g(x) = f(x+c)$

(c) $g(x) = f(x)$

(d) $g(x) = f(x)$

(e) $g(x) = f(|x|)$

(f) $g(x) = |f(x)|$

(g) $g(x) = f(x)$

(g) $g(x) = f(x)$

(h) $g(x) = f(x)$

(h) $g(x) = f(x)$

(o) $g(x) = f(x)$

(e)
$$g(x) = f(|x|)$$
 $g(x) > f(x)$

(f)
$$g(x) = |f(x)|$$
 for is some interesting to the contraction of the

3. Graph-function equivalence [15 points]

Let $f:A\to B$ and $g:A\to B$ be functions. The graph of f is defined as the set of ordered pairs

$$G(f):=\{(x,f(x)):x\in A\}\subseteq A\times B.$$

Show that f and g are equal (i.e. $f(x) = g(x) \ \forall x \in A$) if and only if G(f) and G(g) are equivalent (i.e. $(x, y) \in G(f) \iff (x, y) \in G(g)$).

4. Parabola [15 points]

Let L denote the graph of the constant function $g(x) = \gamma \in \mathbb{R}$ (i.e. a horizontal line) and \underline{P} denote the point $(\alpha, \beta) \in \mathbb{R}^2$ not on the line $(i.e. \beta \neq \gamma)$. Show that the set of all points, $(x,y) \in \mathbb{R}^2$, which are equidistance from L and P is the graph of the function $f(x) = ax^2 + bx + c$. What happens if $\beta = \gamma$?

(-1,-1/2) ([0,2]

D is the domen

y-7 // distance to of horizontal line

(x-4) - [A-6) = (A-3)

Math421-S T23_PS4

MATH 421 ST-2023: Problem Sheet 4

February 20, 2023

Math 421: Problem Sheet 4

Deadline: Feb. 24th at 11:59pm

Solutions to this problem sheet must be typed up in LATEX and uploaded to Canvas as PDFs. Some LATEX resources can be found here. Please contact the instructor (Dr Thomas Chandler, tgchandler@wisc.edu) via Canvas or email, if there are any problems uploading the solutions.

1. Graph plots [8 points]

Consider the following graphs of a function $f: D \to [-2, 4]$, where $D \subseteq [-2, 2]$:

For each graph, answer the following questions (no proof is needed):

- (i) What is the domain of f?
- (ii) What is the image of f?
- (iii) Is f injective?
- (iv) Is f surjective?

2. Graph manipulation [12 points]

Let f and g be functions and $c \in \mathbb{R}$. Describe the graph of g in terms of the graph of f in the following cases:

(a)
$$g(x) = f(x) + c$$

(b)
$$g(x) = f(x+c)$$

(c)
$$g(x) = cf(x)$$

(d)
$$g(x) = f(cx)$$

(e)
$$g(x) = f(|x|)$$

(f)
$$g(x) = |f(x)|$$

Note that it may be important to distinguish between c > 0, c = 0, and c < 0.

3. Graph-function equivalence [15 points]

Let $f:A\to B$ and $g:A\to B$ be functions. The graph of f is defined as the set of ordered pairs

$$G(f) := \{(x, f(x)) : x \in A\} \subseteq A \times B.$$

 $G(f) \coloneqq \{(x,f(x)): x \in A\} \subseteq A \times B.$ Show that f and g are equal $(i.e,f(x)=g(x) \ \forall x \in A)$ If and only if G(f) and G(g) are equivalent $(i.e.\ (x,y) \in G(f))$

4. Parabola [15 points]

Let L denote the graph of the constant function $g(x) = \gamma \in \mathbb{R}$ (i.e. a horizontal line) and P denote the point $(\alpha, \beta) \in \mathbb{R}^2$ not on the line (i.e. $\beta \neq \gamma$). Show that the set of all points, $(x,y) \in \mathbb{R}^2$, which are equidistance from L and P is the graph of the function $f(x) = ax^2 + bx + c$. What happens if $\beta = \gamma$?

Suppose f(g) are equal

So f(x) = g(x)if $(x, f(x)) \notin G(g)$ then $(x, g(x)) \notin G(g)$ $(x, f(x)) \notin G(g)$

-> 8=8

Friday, February 24, 2023		
Friday, February 24, 2023 9:54 AM		
Fri 02/24 - PS4 HW, OH, Limit	Telap Thm	
Sat 02/25 Sun 02/26		
Mon 02/27 - Continuing Reading Tue 02/28 - OH	a function & cannot approach	
Wed 03/01 - review class / midterm (6pm)	two different limits @ a	
	lin () - () im C () - 1	
	lim f(x) = (1 Lim f(x) = L2 = L1=1-2	
Do l		
King 4 EXO. 3	$\mathcal{E}_{,>0}$ st. $0 < x-a < \mathcal{E}_{,} \Longrightarrow f(x)-L_{,} \leq \mathcal{E}_{,}$	
		(
46.00 78	5 (1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
10190,20	5,70 St. 0< x-a 1 < 8, => fcx - L, 1 < €.	
1.) Tape 8 = {	£ £ 7.	
"J TWRE 5	0,,023	
	(1fa)-L,\ce	
7670 OK X	-a/(A => 7/()//	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-9/LA => 2/5W-Lz/5E	
2.) Ussume	Li = Lz // proof by contradiction	1x+y = (x) +) y
Jet 16, - L		1x-y) > 1x1-1y1
then 111	1-1, -fax +fax 1 x+y	14
1-1 -2	$ = L_1 - f(x) + f(x) + L_2 $	
		1x1 Triangle
	$= \left \left(L_{1} - f_{(X)} \right) + \left(f_{(X)} + L_{2} \right) \right $	Inequality
	$\int (L_1, \int (X_1) + (\int (X_1) + (L_2)$	In July
	$\leq f(x)-L_1 + f(x)-L_2 <2\varepsilon$	
	$ L_1 - L_2 < 2E = L_1 - L_2 $ $E = \frac{ L_1 - L_2 }{2}$ Contradiction in	
	6 1L1-L21 × 0<0	
	E = 2 (antadortion -	
71 /10	lim (, lim) .	
	ne $x \to a f(x) = C$ $x \to a g(x) = M$	
① lim x→a	$(f+g)(\chi) = L+m$	
	$(f \cdot g)(\chi) = L \cdot m$	
lim	$\left(\frac{1}{2}/g\right)(x) = \frac{1}{m}$	
$\gamma \rightarrow \sim$		
Moth 4	21 Page 34	

Lemma 1 - C	
if $ x-x_0 < \varepsilon$ and $ y-y_0 < \varepsilon$	
then $ (x+y)-(x_0+y_0) \leq 2\varepsilon$	
Proof (X+y) - (X0 +y0) = X-X0 + y-y0/	
$= X-X_0 + y-y_0 $	
ξ ri ϵ	
Magazity	
1€>075,70 St. OC X-a <8,=> fx)-1 <€	
de>0 3 82 40 St. O < (x-a) (81 ⇒ 190x) -M LE	
Choose & = mm & 8, , & 2 } then	
(f(x)-L) LE	
$\forall \ \epsilon > 0 0 < x - a < \delta \Rightarrow \begin{cases} (f(x) - L) < \epsilon \\ g(x) - m < \epsilon \end{cases}$	
We want to show (f+g)(x)-(L+m)/ <e< th=""><th></th></e<>	
¥ E>0 0 < x-a < 8	
$ \{\xi + g\}(x) - (L+m)\} = \{f(x) + g(x) - (L-m)\} $ by triangle	
flus \\ \x > 0, \(\frac{1}{2} \) \\ \x \(\frac{1}{2} \) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
$\angle \hat{\mathcal{E}}$ for $\hat{\mathcal{E}}^{-\frac{1}{2}}$	ح
Thun aslune lim f (x) = (lin g (x) -6	
Then $x \to a$ $(f \circ g)(x) = C$ Then $x \to a$ $(f \circ g)(x) = C$	
2) Y Ez >0 3 8270 St. O(X-a (82 => gen 5) 262	
We want	

U·	0	<u> </u>	<-a	\	L Mi	n [5	5	\	→ \	· \(\)	· y -	-L·	m\	< 8	Pica.			
									-)	·)	0				7			
		5 ³ =																	
ć) =	J x	nın (٤١,	4 2(a +	13		< 2	<u></u>	m.h	21		<u>e</u> 5 26	+5/9	}				
												<u>'</u>							

Rect American in continuous an (a. b. banachi (f. americanican 12) Rect Color Color Rect Col		
Def. A function f is continuous on $[a,b]$ interval if: 1. f is continuous on (a,b) 2. f is continuous on (a,b) 2. f is continuous on (a,b) 2. f is continuous on (a,b) 3. f is continuous on (a,b) 4. f is continuous on (a,b) 4. f is continuous on (a,b) 4. f is continuous on (a,b) 5. f is continuous on (a,b) 6. f is continuous on (a,b) 7. f is continuous on (a,b) 8. f is continuous on (a,b) 9. f is continuous on (a,b) 10. f is continuous on (a,b) 11. f is continuous on (a,b) 12. f is continuous on (a,b) 13. f is continuous on (a,b) 14. f is continuous on (a,b) 15. f is continuous on (a,b) 16. f is continuous on (a,b) 17. f is continuous on (a,b) 18. f is continuous on (a,b) 19. f is continuous on $($	<u>Def</u>	∈ (a, b)
1. It is continuous on (a,b) 2. $tim_1^{-1}f(x) = f(x)$ 2. $tim_1^{-1}f(x) = f(x)$ 3. $tim_1^{-1}f(x) = f(x)$ 4. $tim_1^{-1}f(x) = f(x)$ 5. $tim_1^{-1}f(x) = f(x)$ 6. $tim_1^{-1}f(x) = f(x)$ 7. $tim_1^{-1}f(x) = f(x)$ 7. $tim_1^{-1}f(x) = f(x)$ 8. $tim_1^{-1}f(x) = f(x)$ 9. $tim_1^{-1}f(x) = f(x)$ 1. $tim_1^{-1}f(x) = f(x)$		
· polynomial are cont. on R · Sin (x), cos(x) on R · tan(x) is cont. on (-Iz + nii) Iz + nii) I nt Z · Tx is cont. To, \infty P(x) P(x)	<u>Def</u>	1. f is continous on (a, b)
Sin (x) , $(cos(x))$ on \mathbb{R} tan (x) , $(cos(x))$ on \mathbb{R} tan (x) , $(cos(x))$ on \mathbb{R} $(cos(x))$ on		$x \rightarrow a + (x) = f(a) \qquad (x \rightarrow b - + (x) = f(b))$
Sin (x) , $(os(x))$ on \mathbb{R} tan(x) is (ant) . (ant)	• Pol	montals are cont. on R
tank) is cont. an (-Iz+nir) + nir) + nt Z TX is cont. To, con) P(x) P(x)		in (x) cos(x) on R
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	an(x) is cart. on (-II+nII) I + nII) y nt 7
- 3 x		
P(x)	V	1 1 3 L ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
P(x)	ø ·	JX R
P(x)		ox 1 1R
P(x)		1/1 1/2
		P(x)
	C	Domm Domm

			$\frac{1}{2}(x) = \frac{0 \times 80}{2}$ $\frac{1}{2}(x) = \frac{1}{2}$
12 1		σ	7 / X = P
1 6			L(0,1) ~ 1 2 2
7(4	ø		prove that for any as (0,1)
1/8			$\lim_{x\to\infty} \zeta(x) = 0$
,/0			Lyn Schill
	18 -101	· ~/v	If true, then f is continuous at all a not in rational numbers, that is discontinuous at all a in rational
			numbers
Lot	n be such 41	rat $\frac{1}{n}$ L E	Proof we need to show $\forall \epsilon > 0$, we can find a $\delta > 0$
for hihat	$\chi > f(x)$	> E	S.t. $ x - a < \delta \Rightarrow f(x) < \epsilon$
			1 2 n-2 2 by definition of funct
$\chi \in \mathcal{N}_{n}$	$= \begin{cases} \frac{1}{2} & \frac{1}{3} \end{cases}$	3 14 14, 49	$\frac{1}{n-1} \frac{2}{3^{n-1}} \frac{n-2}{n-1} $ by definition of funct
	esest element in S_n to a		
	$\begin{aligned} & -x , x \in S_n \\ & _n, \forall x \ s. \ t. \ 0 < x-a < l \end{aligned}$	$Ain a-x , x \in S_n$	
$\Rightarrow \left f(x) \right < \frac{1}{n}$	< 6		

Monday, March 6, 2023	
Monday, March 6, 2023 9:53 AM	
Spran 5-9	
Th ^m :	
$\lim_{x \to a} f(a) = \lim_{h \to 0} f(a+h)$	
Proof	
What do we know?	
as x appositude a	
lim definition	
V limitate exist	
Let lim f(x) = 2 hm (a+h) = M	
We want to Show 2 = M	
$0 + \epsilon > 0 = 3 > 0 \text{ S.t. if } \sigma < x-a < \delta$	
- Chen 1 f (x) - L L E	
	11 6
₩ €>0 = 3, >0 St. if 0 < \ h-0 \ 20 = 0 0	(IN) 40
then f(a+h) - m L &	hCE hCE
How to go from 1 to 2 ?	-h L Z
$\chi \mapsto a + h$ $ \chi - a \mapsto h $	
$\forall x \mapsto \forall h$ $f(x) \mapsto f(a+h)$	
(D) + 6 × 0 3 7 × 5 t. (4 5 × (44) 6) (8)	
1	
then If Cath) - L) LE	
06 00 00 00 00 00 00 00 00 00 00 00 00 0	
VESO 3 300 St. if 0 < h < 8	
0 h c 3 then f(a+h) - 2 < E	
So lin (C. 1) -1	

$\lim_{n\to 0} f(a+h) = L$
o by uniquiness of limits (= M
Thur Let I be a function st.
f(x+y) = f(x) + f(y)
$ \begin{aligned} f(x) &= X \\ f(x) &= X \\ f(y) &= y \end{aligned} $
$f(x) = x^{2} + 1$ $f(x+y) = (x+y)^{2} + 1 = x^{2} + 2xy + y^{2} + 1$
$f(x) = x^{2} + 1$ $f(y) = y^{2} + 1$ $= x^{2} + y^{2} + 2$
f(x+y) = f(x) + f(y) and $f(x) = f(x) + f(y)$ and $f(x) = f(x) + f(x)$ and $f(x) = f(x) + f(x$
Proof affence $f(x+y) = f(x) + f(y)$
6 what is f(0) $f(x) = f(x+0) = f(x) + f(0)$ $7 lbs f(0) = 0$
a what is f(a) -f(b)
$\chi'(a-b) \Rightarrow f((a-b)+b) = f((a-b))+f(b)$

X; a-b ⇒ J; 6	f((a-b) + b) = f((a-b)) + f(b) $f(a) = f(a-b) + f(b)$ $f(a) - f(b) = f(a-b)$
$\lim_{x \to 0} f(x) = f(0)$	
0<5E,0<3A	S.C. $i+ x < 3 \Rightarrow f(x) < \epsilon$

Wednesday, March 8, 20 Wednesday, March 8, 2023 9:56 AM	23			
	lim C	C		
assumption 2'				
Δ	₹ €>0, 73 >0	5.E. 4x,	1×1<8 ->1	$f(x) \angle \mathcal{E}$
Senatch Work				
lim y > a	fcy)=fa	YE>0,38	>0	
				fcy)-fca) \ < E
Let x = y	-a the 1f	(x) = f(y-a) = \(\(\(\(\) \) -	fail
	(y) = fca)			
	0, 38>0	5 E, 0<3 K	>>	
# 2>	0, 38>0 8	E. V g	1y-a/ < 3 =) fcy)-fca \ (ED
Ton's Alu	very think about	4 what year	know / what	you need to she
			,	V
(a, i)	(1,2)	7(0,2)		

(2) .	\$ (x)	=	S -1	>	ŒŒ X&) Q		3)	2	<u>S</u> :	×	ኢ-	t Q			
										C	, 0 -	J		2	Χ¥	\$ (b)			

There are many (m) Consequences as these				
There are vary! Cool Consequences of these theorems.				
For example Spivak discussed a Couple of neat				
Ones about Polynomials:				
Proposition 1: Every positive number has a Square root				
i.e. If d>0 then there is some x such that x=d.				
Proposition 2: Le6 P(x)= x1+an1x1++a. be				
a polynomial. Is n is oold the P(x) has abkast one root.				
Proposition 3: Let P(x)= x1+an-1x1++a. be				
a polynomial. If n is even then there is a y Such				
that P(y) & P(x) for all x.				
Proposition 4: Let P(x)= x1+an-120++a. be				
a palynomial. If niseven then there exists an M				
Such 6 hab: $P(x) = C$ has ableast one Sol ⁹ for $C \ge M$ • $P(x) = C$ has no Sol ⁹ s for $C \le M$.				
Sadly we don't have time to prove them all!				
Let's just do Proposition 2:				
Proposition 2: Leb P(x)= xn+an-1xn++a. be				
a palynomial. If n is odd the P(x) has ableast one root.				
Proof idea: We want to use IVT to show that show				
exists a C Such that P(c)=0. To obe this we need to Show that P(x)>0 for Some points and P(x)<0				
for some points.				
How? We can Consider very large Positive 4 negative				
numbers as $P(x) \cap x^n$ for lage $ x $.				
₹œn cué				
, , ,				

Frog Consider $P(x) = x^n + a_{n-1} x^{n-1} + \dots + a_0$. To	and.			
IVT we need be find a xo, x, 6 IR Such black	app. Z			
$P(\infty) < 0 < P(\infty_1)$.				
First Note 6 hat $P(x) = x^{n} \left(1 + \frac{\alpha_{n-1}}{x} + \dots + \frac{\alpha_{n}}{x^{n}} \right)$				
Now we would like to find a Constant of Su				
$\left 1+\frac{\alpha_{0}-1}{x}+\cdots+\frac{\alpha_{0}}{x^{n}}\right \leq \alpha$ for $ x $ long				
Why? hell then P(x) will be bounded by x as we worked.	n sust			
To do blis nobe: Tringle inequality.				
$ \mathbf{x} = \left \frac{a_{n-1}}{x} + \dots + \frac{a_0}{x^n} \right \leq \frac{ a_{n-1} }{ x } + \dots + \frac{ a_0 }{ x ^n}$				
Now () Let $ x > 1 \Rightarrow x ^n > x \Rightarrow \frac{1}{ x ^n} < \frac{1}{ x }$				
$\Rightarrow * \leq \frac{ a_{n-1} }{ x } + \cdots + \frac{ a_n }{ x }$				
(1) Let x >2 n ai for i=0,1,1,,n-1.				
$\implies \frac{ a_i }{ x_i } < \frac{1}{2n} \text{for } i = 0, 1, 2 \dots, n-1.$				
$\Rightarrow * \left\langle \frac{\frac{1}{2}u + \dots + \frac{1}{2}u}{u} = \frac{1}{2} \cdot \frac{1}{u} \right\rangle$				
So if 1x1>Max{1,20/a01,20/a1,20/an-	.113			
Then $\left \frac{a_{n-1}}{\infty} + \cdots + \frac{a_n}{\infty}\right < \frac{1}{2}$				
\Rightarrow $-\frac{1}{2} < \frac{2\alpha-1}{2\alpha} + \cdots + \frac{2\alpha}{2\alpha} < \chi$				
$=> \frac{1}{2} < 1 + \frac{2\alpha-1}{2\alpha} + \cdots + \frac{2\alpha}{2\alpha}$				
Finally we have a bound! So Let's chase a	2. LX,			
· Leb x,>0 and x,1>Mex {1,20,001,,2				
We then have by above:	,			
$\frac{x_i^{\alpha}}{2} < x_i^{\alpha} \left(1 + \frac{x_{\alpha-1}}{x_i} + \dots + \frac{x_{\alpha}}{x_i^{\alpha}} \right) = P($	(×,)			
$\Rightarrow P(x_1) > \frac{x_1^{\Lambda}}{2} > 0 \leftarrow Y_{\text{cy}}!$				
· Le6 x . < 0 and x > Max {1,20, and , 20,1	عمراك			
We then have by above:				
$\frac{x_0^n}{2} > x_0^n \left(1 + \frac{a_{n-1}}{x_0} + \dots + \frac{a_0}{x_n^n} \right) = P(x_0^n)$ Suitables direction as $x_0^n < 0$.	co)			
^A Switches direction as 25°CO.				

	⇒> F	(x.)	× × × ×	<0.4	- Yay	,								
) < 0 <				ginuous							
$\infty \epsilon$	[xe, x,]	12.139 Soch	IVT Ghab F	(x)=0!	-Xy	. a	пΖ							
G:	Why ob	esn'6 61 > => 2	his work xo ¹ >0 tokan	< for n	e ven :									
Ha	ive c	2,90	cc 5	spring	Rec	ess!								
_							_							

If for all MCX there exists an REA St- MCa
What is Sup (4) = undefined
Int(O) = undefined
YXER We have a LX for all a E Q
YXXIR we have azx for all At O
AXEM WE HAVE W/K ,
[P13] If A=IR, non-empty (A=0) and is bounded above
then A had a least upper bound.
aka the least upper bound property
Does the following subset of the have a least upper bound?
Does not have a least upper bound for rational #
L.B
T2 & B
To prove the intermediate value theorem (IVT) we need a lemma
Lemma - Suppose f is continuous at a Then if f(a) > 0, (f(a) < 0)
Then $\exists \delta \ s.t. \ x \in R, x-a < \delta \Rightarrow f(x) > 0 \ \big(f(x) < 0 \big)$
IVT - if f is continuous on [a,b] and f(a) < 0 < f(b) then there exists $c \in (a,b)$ s.t. $f(c) = 0$ Proof
Construct a bounded & non empty set (then use P13) $A ::= \{x \in [a,b]: f(y) < 0 \ \forall y \in [a,x]\}$

Friday, March		
J A ≤ 1	used mon-empty and bounded above then A has a least upper-bound	
<u>Jemma</u> Ł	prode fish cont. at a. If $f(a)>0$ (or $f(a)<0$), there exists a $\delta>0$ St. $ x-a L\delta \Rightarrow f(x)>c$ (or $f(x)<0$)	;)
Theorem	IVT) If f is cont. on $[a,b]$ and $f(a) < 0 < f(b)$ then $\exists c \notin [a,b]$ SE. $f(c)=0$	
	$i = \{x \in [a,b] \mid f(y) \neq 0 \forall y \in [a,x] \}$	
	$f(a) + \frac{1}{a}$	
	t A Since f(y) LO Y yte [a, a] = {a}	
2	nded lince A E [a,b]	
P 13	> C= Sup (A) by triche tony	
	$f(\alpha) < 0$ $f(\alpha) = c$ $f(\alpha) > 0$	
Proof		
allu	for Contradiction FCDCO	

lemma => 36 x S.t. 1x-c 28 => f(x) 40 " (< x, < C+ & => 60x) <0 f(x)<0 + x & (C-3,x,) $C = Sup(A) \Rightarrow \exists x_0 \in (C-3, C] \subseteq \mathcal{E}.$ $f(x) \perp O \quad \forall \quad \chi \in [a, x_0]$ if not true then x, would be an upper bound Smaller then C Togethe => f(x) <0 + xt[a,x.] U(C-3,x.) = [a,x.] X, > (by Deft of X, X, & A by deft of A bot this is a contradiction to C= Sep (A) because X EA but X>C Part 2 (1) alsume (or contraduction fcc) >0 recold lorna => 2 200 St. fox o for XE (C-6, C+3) $C = Sup(A) \Rightarrow \exists x_0 \in (C-s, C) S.t. \exists \alpha > 0$ for $\chi \in (a, x_0)$ => f(x0) > 0 as x0 E (C-3, C+3) $f(x_0) < 0$ as $x_{0} \in [a, x_0]$

$f(x_o) < 0$ as $x_{ot} [a, x_o]$
Lemma Suppose & ju Cont. at a. Then I Brc St. & is bounded on (a-3, a+3)
ZM>0 St. S(x)cM +x t (a-3, a 13)
Proof - Recall Cant. function => lim & ca) = a
₩ €>0, 330 S.C. Ze (A-3, A 13)
$\Rightarrow f\alpha - f\alpha \angle E$ $\Rightarrow f\alpha - E \langle f\alpha \rangle \langle f\alpha \rangle + E =$
Bounded Constion theorem
The (BFT) If is cont. on [a, b) then f is bounded above.
IM > 0 S.E. SQ) CM YXE[a,6]
Proof A = { x6[ab] 5 is bounded above [a, x] }
① non-empty atA ⇒ fa (fa)+1 ② Bounded above by b
PB holds, let C= Sup(A)

	we want.	to Show a	C=6							
	allune for	Contrae	litella	c <b< td=""><td></td><td></td><td></td><td></td><td></td><td></td></b<>						
	lemma 3	3 70	5£.	ξ -M	borne	dal ala	ve o	~ (C-;	B, C+	(5
27	Yxe[c,	(+B) f	W be	orndad a	bove	on (c	3+2,]	<u> </u>		
	C= Sep(A) = 1	Xo E	(c-z,		5-C, f	ù b	ounded	abare	on
	[a,x.	2) 80-		5						
			7 C 1 C-3 31							
	Togeton (i	S bound	ed abo	je o	\sim					
	Ca	,xJ u (a	;-7,×,-	7 = [a	,×)					
	AX	,7C &	×, E A							

Friday,	March 31, 2023 , 2023 9:58 AM
<u>De</u> s	A function of is diffrentiable if the followary limit exist
	$f(a) = \lim_{n \to 0} \frac{f(a+h) - f(a)}{h}$
	$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$
	$f(x) = \frac{1}{x} \qquad f'(x) = \lim_{n \to 0} \frac{\frac{1}{x+n} - \frac{1}{x}}{n}$
	$= lim \times - (x + h)$
	$h \to 0 \qquad h \times (x + h)$ $= \lim_{n \to \infty} -h$
	$=\lim_{n\to 0}\frac{-1}{n\times(x+n)}$
	$= \lim_{h \to 0} \frac{1}{x^2} = -\frac{1}{x^2}$
	$\frac{5(x)}{-x^2} = -x^2$
	Diffrentable on R\{c3}
	Continuous
Th	oren If I is difficultiable at a
	coren If I is differatiable at a the other of it continues at a
Can	Dufferentiability - continuity
UNIT	dis Cont. m. +y -7 - differentiable
Proo	allume; Diff Q a prove: Cont Q a
	assume: Diff @ a prove: Cont @ a

assu	me: Diff @ a prove: Cont @ a
	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f(a) \qquad \lim_{x \to a} f(x) = f(a)$
lim f	$(x) = \lim_{x \to a} \left[f(x) - f(a) + f(a) \right]$
	$= \lim_{x \to a} \left[\frac{(x-a)}{(x-a)} \left\{ f(x) - f(a) \right\} + f(a) \right]$
	$= \lim_{x \to a} \left[(x-a) \frac{f(x)-f(a)}{x-a} + f(a) \right]$
	$= \lim_{x \to a} (x - a) \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) + \lim_{x \to a} f(a)$
	$= 0 \times f(a) + f(a)$ $= \lim_{n \to \infty} f(a) + f(a)$
	$= \lim_{x \to a} f(x) = f(a)$
S ppose	$f(x) = x $ $\langle x \times x \rangle_G$
	$ \begin{array}{c} (x \times x) = 0 \\ (x \times x) = 0 \end{array} $ Continues
lim x + a	$\frac{1}{ x - a } \begin{cases} \lim_{x \to a} \frac{x-a}{x-a} & a > 0 \\ x \to a & x \to a \end{cases}$
x → a	x - a = x-a =
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$

(e)	太 - 太	ew	um	K	(x) - KC	a)	_ w	m	t(x)	- Tla)			
	0		um x→a	λ	c-a		χ.	7ā	X	-a				
							=	5,	(a.)					
01	1 - 1	001	1.		10.6									
(2)	id w	<i>V</i> · · · · · · · · · · · · · · · · · · ·	lim X+at	RO	<u> </u>	7	- lim	g Gi	-gla	2	g' ((a)		
				'χ'	- ~		<i>N</i> / <i>N</i>	,			U			
	l	as gl	(a) = .	()(.)	K	71	Jili	a a tu l	la	#1				
		<i>(</i>)	-a) = -	+ C) /	W	zuj	Menter 19	10	िय				

true if	the lin cro	x) & fin x > a	F(x) exi	317	
	ling G(X)&				
Suppose	Sols) = 7-0	> > >			
F	$G(x) = \frac{1}{x-a}$ $G(x) + F(x) = C$	2 CO Men CXAMP/O			
Rule 1-4		$\times + \alpha_0$			
Rule 384	$=$ $N_1 dx (x)$				
, , , ,	le [Rule 5)				
	$(x) = x^n$ where $n + 1$	thon f'(x).	- nx		
freed by of regards		Bi nontal Theorem (a+b) = 2 C-0			
	reeal	$\frac{1}{i} = \frac{1}{i \cdot (n-i)}$	<u>)</u>		
	(a+t)n = an + n.0	$n^{-1}b + \frac{n(n-1)}{2}$	· 4 n-2 62	

Proof by petintin $(x+h)^h - x^h$ $(x^h) = h + 0 \qquad h$ $= \lim_{n \to 0} \frac{x^{n} + nx^{n-1}}{x^{n}} + \frac{n(n-1)}{2} x^{n-2} \left(\frac{x^{n-2}}{x^{n-2}} - - - + nx \right)^{n-1} + \ln x^{n}$ $= \lim_{n\to 0} \frac{1}{n} \times \frac{1}{n} + \frac{n(n-1)}{2} \times \frac{n-2}{n} + \frac{1}{n} \times \frac{n-2}{n} + \frac{1}{n$ By binewity = nxn-1 + 0 + 0 - - = nxn-1 [Rule 1-5] fa) = an xn + an xn-1 + a, x + a. $f'(x) = \frac{\lambda}{\alpha x}$ = $a_n dx(xn) + a_{n-1} dx(x^{n-1}) + \cdots + a_n dx(x) + dx(a_n)$ $= n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + --+a_1 + 0$ bener Rule Pulei Theoren (Product Rule) 1 of f & g bc diff. 2 a => f-2 is diff. @ a with (f.g) (a) = f(a) g(a) + f(a) - g'(a) (f.g)'(a) = lin f(a+h).y(a+h) - f(a).y(a) add a yero > f (ath) y (a) -f (ut) g (a) 9(614) 9,

add a yero & f (ath) y (a) -f (uth) g (a) $g(a+h) \cdot g(a+h) - f(a)g(a)$ $= (f(a+h) - f(a)) \circ g(a)$ $+ f(a+h) \cdot (g(a+h) - g(a))$ (f.g)'(a) = lim 7 f(a+h) -f(a) , g(a) + f (a+h) . g(a+h)-g(a) = lim Z g (a) - lim f (a+h) - f (a) + lim [f(a+h)) hin y (a+h) - y (...) = 9(a) f'(a) + f(a) g'(a) 0

existence follows from products / Reciporal 17
Roles. [17] — [8] men we can take denotes of any rational foraction
men we can take derivities of any national Conction
$Rex = \frac{f\alpha}{\alpha\alpha} = \frac{\alpha x^{h} + \alpha_{h-1} x^{h-1} + \dots - \alpha_{6}}{bmx^{m} + b_{m-1} x^{m-1} + \dots + b_{6}}$
for $\frac{\chi^2 + 1}{\chi^3 - \chi}$
Theoren (Chan Rall)
Jet g be diffrentiable at a & f be diffrantiable at geas. Then fog is differentiable & a
at gia). Then fog is differentiable (a
[Pule 9] (fog) (a) = g'(a) f'(g(a))
$\frac{12}{4}\left(g(x)\right)' = g(x)\left(-g(x)^2\right)$
Proof Sketch
(fog) (a) = lim (fog)(a)
$=\lim_{n\to\infty}\frac{f(g(a+h)-f(g(a)))}{h}=A$
$A = \lim_{h \to 0} \left(\frac{f(g(a+h)) - f(g(a))}{h} \right) \times \frac{g(a+h) - g(a)}{g(a+h) - g(a)} $ $f(g(a+h)) - f(g(a+h)) - f(g(a+h))$
n>0 (a+h) -g(a))
$=\lim_{h\to \infty}\left(\frac{f(gan)-f(ga)}{g(a+h)-g(a)}-\frac{g(a+h)-g(a)}{h}\right)$
5'(qa)) g'(a)
3 (700)
= g'(a) = lim + (q(a+1)) - f(q(a)) q(a+1) - q(a)
0 h > g(ath) - g(a)
let $\kappa = g(a + h) - g(a)$

$k \to 0 \text{as } h \to 0 \text{b/c} g(a) 7$ $k = g'(a) \cdot \lim_{k \to c} \frac{f(g(a)+k) - f(g(a))}{k} = g'$ $f'(a) = \left(\frac{f(g(a+k)) - f(g(a))}{k}\right) \text{if} f'(a) = g'(a)$	continus $(a) \cdot f'(g(a)) = g(a)$ $g(a) + g(a)$	
$F(a) = \begin{cases} \frac{f(g(ah)) - f(g(a))}{g(ah) - g(a)} & \text{if} \\ \frac{f'(g(a))}{a} & \text{if} \end{cases}$	geath) = gea	
Claim1: $\frac{f(g(a+h)-f(g(a))}{h} = \phi(h) \cdot \frac{g(a+h)}{h}$		
Claim2: $\phi(h) \to f'(g(a))$ as $h \to 0$		
If 1 and 2 are true then $(f \circ g)$		

(a) f(g(a)) = g(a) | f(g(a)) = f(g(a)) = 0 | f(g(a)) = 0(all glath) + gla) $\forall \mathcal{E} > 0 \quad \exists \partial > 0 \quad \text{S.t.} \quad o \mid |h| \mid \mathcal{B} \Rightarrow \left| \frac{f(q(a+h)) - f(q(a))}{q(a+h) - q(a)} - f'(q(a)) \right| \quad (\xi$ $f'(g(a)) \Rightarrow \lim_{k \to 0} \frac{f(g(a)+k) - f(g(a))}{k} = f'(g(a))$ $= \frac{f(g(\alpha) + \kappa) - f(g(\alpha))}{\kappa} - f'(g(\alpha)) \angle \mathcal{E}$ Recall glas is defferentiable => gear is continuous thus glath) -> g(a) as a lim f(x)=g(a) = lim g(a+h) = g(a) : 3 3 >0 S.t. 04 h L 0 2 $= |g(a+h) - g(a)| = |f(g(a) + g(a+h) - g(a)) - f(g(a))| \leq = |g(a+h) - g(a)| = |f(g(a))| \leq = |g(a+h) - g(a)| = |f(g(a))| = |f(g(a))| \leq = |g(a+h) - g(a)| = |f(g(a))| = |f(g(a$ Rule of defferentiation f(x)= LER => f'(x)=0 $\frac{1}{2} | f(x) = x \Rightarrow f'(x) = 1$ [3] f(x)= g(x)+h(x) => f(x) = g(x)+h(x) 2 Inemity [4] $f(x) = c_0 g(x) for ceir => f(x) = c_0 g(x) > 6 dienv.$ $f(x) = x^n$ for $n \in \mathbb{N}$ $\Rightarrow f'(x) = n x^{n-1}$ power Rule $f(x) = g(x)h(x) \implies f'(x) = g'(x)h(x) + g(x)h'(x)$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Trig $\frac{1}{dx} Sin(x) = \lim_{h \to c} \frac{Sin(x+h) - Sin(x)}{h}$ $\lim_{h \to c} \frac{Sin(x) (os(h) + (os(h) Sin(h) - Sin(x))}{h}$
$= \frac{1}{2} \sin (x) \lim_{n \to 0} \left(\frac{\cos(n) - 1}{n} \right) + \cos(x) \lim_{n \to 0} \left(\frac{\sin(n)}{n} \right) = \cos(x)$ $\frac{1}{2} \cos (x) \cos (x) + \frac{\pi}{2} \cos (x)$
$\frac{d}{dx} \left(\frac{Sin(x)}{cos(x)} \right) = \frac{cos(x) \cdot cos(x) + Sin(x)sin(x)}{cos^2(x)}$
$= \frac{1}{\cos^2(x)} = \operatorname{See}^2(x)$ $e^{ix} = \cos(x) + i \sin(x), e^{i\pi} = -1$

From $f(x) > f(x) > f(x)$	$f'(x) = g + x \qquad f(y) - f(x)$
Signos e	
y CX ET Y-XCO	
$\Rightarrow \frac{f(y) - f(x)}{y - x} > 0$ $\Rightarrow \lim_{y \to x} \frac{f(y) - f(x)}{y - x} > 0$ $\Rightarrow \frac{f(y) - f(x)}{y - x} > 0$ $\Rightarrow \lim_{y \to x} \frac{f(y) - f(x)}{y - x} \leq 0$ $\Rightarrow \lim_{y \to x} \frac{f(y) - f(x)}{y - x} \leq 0$	to verity pitterenitablish also de the Same proof with flipped Signs for the minimum proof
betwhen of Jeft Right Rimits	
f'(x) = f'(x) = f'(x) = 0	

0	Since of cont. Since of diff h(a) = f(a) - h(b) = f(b) -	f(b)-f(a) ((a-a) =	f(c)		
				7hr hold, The hold,		

Friday, April 14, 2023 Friday, April 14, 2023 9:53 AM
7 m 600 - 11 N
The Mean Valve Theoren
Il & is cont. on Tab and differentiable on (ab)
If S is cont. on $[a,b]$ and differentiable on (a,b) then \mathbb{F}_{\times} to (a,b) s.t.
$f'(x) = \frac{f(b) - f(a)}{b - a}$
Quotient Rule
$\frac{f(a)+f(b)}{2} = \frac{1}{2}$
Corollary 1 If f'(x) = U \(\tau \times \tau \tau \(\tau \)
Corollary 1 If $f'(x) = c$ $\forall x \in [a,b]$ then $f = c \in \mathbb{R}$ $\forall x \in [a,b]$
Proof_
Consider [C,d] = [a,b]
$WVT \Rightarrow \exists x \in [C,d] St. f'(x) = \frac{f(d)-f(c)}{d-C}$
$\Rightarrow 0 = \frac{4 \times C \left(\frac{1}{2} \right)}{4 - C} = \frac{4 \times C \left(\frac{1}{2} \right)}$
Since this hold of zc, d] \(\begin{aligned} \
\mathcal{L}_{α}
Caralley 2

 $\frac{\text{Proof}}{\text{Del }^{1}} = \frac{\text{lim } f(\alpha + h) - f'(\alpha)}{h}$ Smce f'(a) =0 $f'(a) = \lim_{h \to 0} f(a+h)$ HE>O, 3320 St. |2000 St| $|62|h|23 \Rightarrow |\frac{4^{1}(a+h)}{h} - f^{1}(a)|26$ +"(a) - 5 C (ath) C ("(a) + E To get a minimum we want f'(ath) > 0 for his flash) LO for heo Let & = {1/(a) = 14 (h/c8 => -3 L h c 2 => f (a+h) c 0 => f(a+h) c 2 f (ca) => f is danger oches > f'(a+h) > 0 => f is inc. to the right

		5/	ig a	d S'	are	e equal	E (-)
Example lin SM(x) x +0 x	-1 ¥	E>a 7	3 yo st		2 - \ 9	5,1n(x) -	1 (1
lm x+o Sin(x) =		,		[x 4	8 = ? -	* -	128
		n Shì	$\frac{(x)}{(x)} =$	lin C	[08Co)	= Km (0	56)
					1×148	¥ €>0, 2} ≥> \ Cost	(30) - \ \ \ E
F.							
F-Continuous non A is Yae A lin 3(x)= G(a) X>a S.E. YSON DE-N	c5 => 5(x)-5(n)k;	Tae M:	=Z×-1 (» C+ a-N=Z x-a				
	A		Ke 5= = =				

Then there must exist a 3×0 S.E. $4 \times , y \in \mathbb{R}$ $ x-y \ge 3$ $ x^2-y ^2 \le = 1$
$x = \frac{1}{3}$ $y = \frac{1}{5} - \frac{5}{2}$ $\frac{1}{5} - \frac{5}{6} - \frac{5}{2}$ $\frac{3}{2} < 3$
$\Rightarrow 1 \pm \frac{1}{8} - 1 + \frac{5^2}{4} > 1 $ Contradict
$\widehat{U} = \{x\} = \{z^2 \mid i3 \text{ Uniform Cont. on } (0,4)$ Let $\{\xi\} = \{0,4\} = \{0,4\}$
$ x^2 - y^2 = x - y \cdot x + y < 8 \cdot x + y < 88$ $5, nce x, y \in (0, 4) $
Let $\mathcal{E} = \frac{\mathcal{E}}{\mathcal{E}}$ then $ x-y \leq \frac{\mathcal{E}}{\mathcal{E}} \Rightarrow x^2 - y^2 \leq \mathcal{E}$ $(2) \mathcal{E}(x) = x^2 \text{is Untan Cant. on } [-N, N] \forall N > 0$
Let $\varepsilon > 0$, $ x-y \subset \delta$ \times , $y \in [-N, N]$
$ x^2 - y^2 \le x + y \le 2W3$ $\Rightarrow \text{Charge } 3 = \frac{\varepsilon}{2W}$
thus $\forall x, y \in \mathbb{F}N, N$ $ x-y \leq \frac{\pi}{2}N \Rightarrow x^2 - y^2 \leq \varepsilon$

Uniform Cont. => Cont. Theorem If fix centimos on Ia, b] then f 13 Unitary Cont. on Ia, b) lemma - let a L b L C and f uniformly cost. on [a,b] and [b,c] then f is uniformly cont. on [a, c] Proof let 670, there expirts a 3 >0, 3, >0 St. > 1 x - y | c & = > | f(x) - f(y) | c & fig Centimous at by thus 33, > 0 St. Yze [a, C] 12-6/c8 = 15(2)-f(b) / c = 1567-566) 1 4 5 X,y t (b-3, b+3) = |54)-f(b) < \(\frac{\xi}{2}\) : |f(x)-f(y)| = |f(x)-f(b)+f(b)-f(y)| ~ frimgle meg-15(x)-8(b)1+1+(q)-+(b)1 LE XE[a,6], yE[b,C] 1x-y/28, => 1x-6+6-4/283 b-x +y-6 283

affere	,	& <	- (m	<u> </u>	LIC.	o 1	~.\0	(not	. (1					
l	at			<i>I</i>	.	2		V. 3 .	<u> </u>	P-		J		Fa	1	ر جے ۔ا	7
asfine	<i>V</i> -C	_		, ,	,	P ~	ve			L Ce	<u> </u>	a	^_	<u>`</u> `	1	· 2)	
	<i>⇒</i> [X 3	l:	>			P		ريو	_	D E	W.					

Uniform Court => (cont. Cont => valor cont stain) Lipschitz Contrainty A Kin St. VX, yell If (0) - (ye) (LK 2-y) Feell Def A forther is a set of faire with peoper if (AD) & (A,C) are in the fencer than b = c a v => fao-f(s) f: p -> g or (aD), ack, bes Del A further f is O injective Coron to 1 f(s) = f(s) => c-u D'argente Coron for is Pape given a function f, the number 5' is defined at set of pakes (a,b) s.t. (b,c) is in f => f'(a) = b of f(a) = a The I f' is a function comp f is 1-1 papel adjunct 1-1 Suppose (A) & (Ca, C) are in f' => the I f' south A The B and f is rejective 5': f(a) -> pa	Friday, April 21, 2023 Friday, April 21, 2023 9:48 AM		
Lipschitz Continuity 3 k>0 St. vx, y, ER If 0) - (y) (k x-y) Feeld per A function is a set of pains with property if (a,b) & (a,c) are in the function than b=c a- a = 5a>-5(s) f: p-> B or (a,b), ach, b=6 Det A function f is O injecture (one-10-one) if t(a)=+(d)=> c-12 3) Explains (onto) tan-B Det given a function f, the muse 5' is defined as set of pains (a,b) s.t. (b,c) is in f => 5'(a)-b if f(b)=a The 1f' is a function f of in fine fine fine fine fine fine fine			
Lipschite Continuty 3 8 > 0 St. 4 x, y \in M [4(a) - 5(y)] C K x-y Fault per A fourtien to a set of pains With property lif (a, b) & (a, c) are In the function than b = c A a a = 5(a) - f(8) f : A -> B or (a, b), ard, be S Det A fourth f is O injective (anc. 10-anc) it f(a) = f(b) -> c = c B) cajorine (anto) for > B Det given a function f, the nurse 5' is defined at set of pains (a, B) s.t. (b, a) is in f -> 6'(a) = b it f(b) = a The 1 f' is a function (-7 f is 1-1) Suppose (a, b) & (a, c) are in f' -> then 1-1 b = c -> succ f' south	Uniform Cent> Cont.		
The Sto Sto Stone of A graph Stone of facility of the forest of facility of the forest of facility of the forest of the forest of the facility of the facili	Cont. ⇒ Uniform cont. +[a,b]		
French Det A function to a set of pains With property of (a,b) & (a,c) are in the function of the bec a= a = fan=fax Det A function of is O injecture (ane-10-ane) is f(a)=f(d) => a= a Extraction of fax is Set of pains (a,b) & str (b,a) is in of => 5'(a) = b if f(a) = a The of is a function of its is in of proof Alme 1-1 Suppose (a,b) & (a,c) are in of >> Done 1-1 b=(in =) Alme of sentime Since the sentime A A B and of is migration	Lipschitz Continuity		
Feel Det A further is a set of pairs with property if (a,b) & (a,c) are in the functor than b=c a= a = farther fis D hjecture (one to-an) it f(a)=f(b) > a= a Det A functor f (a+o) far B Det given a function f the muse 5' is defined as set of pairs (a,b) s.t- (b,a) is in f => 5'(a) = b it f(b) = a The 1 f 1 is a functor f fis 1-1 Frank Alune 1-1 Suppose (a,b) & (a,c) are in f 1 > (b,a) & (c,a) are in f > bure 1-1 b=c is situe f' south	FK>0 Sto Yx, y EA		
Feel Det A further is a set of pairs with property if (a,b) & (a,c) are in the functor than b=c a= a = farther fis D hjecture (one to-an) it f(a)=f(b) > a= a Det A functor f (a+o) far B Det given a function f the muse 5' is defined as set of pairs (a,b) s.t- (b,a) is in f => 5'(a) = b it f(b) = a The 1 f 1 is a functor f fis 1-1 Frank Alune 1-1 Suppose (a,b) & (a,c) are in f 1 > (b,a) & (c,a) are in f > bure 1-1 b=c is situe f' south	/fa) -fay/ (K/x-4)		
with frozers of (a,b) & (a,C) are in the finite than b=c a= a > fas-fas f; A > B or (a,B), ach, beB Delt A functor f; O hjecture (ane-to-ane) if t(a)=f(a)> a= a 2) Enjecture (ane) from B Dest given a function f, the murse 5' is defined as set of pairs (a,b) s.t. (b,c) is in f > 5-1(a)=b if f(b)=a The 1 f is a function (a) f is 1-1 proof allowe 1-1 Suppose (a,b) & (a,c) are in fi > the if sometime f, A \rightarrow B and f is njecture			
Det A luncher f is O injecture (one-to-one) it f(a)=f(b) > a= a Dispersive (one-to-one) it f(a)=f(b) > a Dispersive (one-to-one) it f(a)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b)=f(b)=f(b)=f(b)=f(b)=f(b)=f(b	Real Der A function is a set of pains		
Det A luncher f is O injecture (one-to-one) it f(a)=f(b) > a= a Dispersive (one-to-one) it f(a)=f(b) > a Dispersive (one-to-one) it f(a)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b)=f(b) > a Dispersive (one-to-one) it f(a)=f(b)=f(b)=f(b)=f(b)=f(b)=f(b)=f(b)=f(b	in the function than b=c		
Def A funda f is O hijectare (one to one) it $f(a) = f(a) \Rightarrow a = a$ Def given a function f the muste 5' is defined as Set of pairs (a,b) s.t. (b,a) is in f $\Rightarrow S^{-1}(a) = b$ if $f(b) = a$ The f^{-1} is a function $\Leftrightarrow f$ is f^{-1} Suppose (a,b) & (a,c) are in f^{-1} $\Rightarrow (b,a)$ & (c,a) are in f^{-1} $\Rightarrow bine 1-1 b=c$ $\Rightarrow auce$ Final All f^{-1} Suppose f			
Disjective (ano to one) if $f(a) = f(b) \Rightarrow a = 0$ Distinctive (ano) far = B Det given a function f, the wave 5' is defined as set of pairs (a,b) s.t. (b,a) is in f $\Rightarrow 5'(a) = b \text{ if } f(b) = a$ The 1 f is a function $\Leftrightarrow f$ is 1-1 Fresh ablume 1-1 Suppose (a,b) & (a,c) are in f is (a,b) & (a,c) are in f is (a,b) &	$\alpha = \alpha \Rightarrow f(\alpha) = f(\alpha)$ $f: A \rightarrow B \propto (a,b), \alpha \in A, b \in B$		
Disjective (ano to one) if $f(a) = f(b) \Rightarrow a = 0$ Distinctive (ano) far = B Det given a function f, the wave 5' is defined as set of pairs (a,b) s.t. (b,a) is in f $\Rightarrow 5'(a) = b \text{ if } f(b) = a$ The 1 f is a function $\Leftrightarrow f$ is 1-1 Fresh ablume 1-1 Suppose (a,b) & (a,c) are in f is (a,b) & (a,c) are in f is (a,b) &	Defe A funda f is		
Peter given a function f , the muse f' is defined as Set of pairs (a,b) s.t. (b,a) is in f $\Rightarrow f^{-1}(a) = b$ if $f(b) = a$ The f' is a function f is f' is a function f' is a function f' as f' is a function f' as f' is a function f' and f' is a function f' are in f' and f' is a function f' is a function f' and f' is a function f' in f' in f' and f' is a function f' in			
set of pairs (a, b) s.t. (b, c) is in f $\Rightarrow f^{-1}(a) = b \text{ if } f(b) = a$ $\text{Then } f^{-1} \text{ is a function } \Leftrightarrow f \text{ is } 1-1$ proof $\text{alline } 1-1$ $\text{Suppose } (a, b) \text{ if } (a, c) \text{ are in } f^{-1}$ $\Rightarrow (b, a) \text{ if } (a, c) \text{ are in } f^{-1}$ $\Rightarrow \text{ three } f^{-1} \text{ b} = c$ $\Rightarrow \text{ three } f^{-1} \text{ suppose } f^{-1} suppo$	J. 10 J. 12		
$75^{-1}(a) = b \text{ if } f(b) = a$ $7t^{\mu} f^{-1} 75 \text{ a function } \iff f 75 1 - 1$ proof $alkine 1 - 1 $ $\text{Suppose } (a, b) & (a, c) \text{ are in } f$ $\Rightarrow (b, a) & (c, a) \text{ are in } f$ $\Rightarrow \text{ three } f^{-1} \text{ Surfam}$ $f : A \rightarrow B \text{ and } f \text{ is myective}$			
Thu f^{-1} is a function $\Leftrightarrow f$ is $1-1$ Proof Assume $1-1$ Suppose (a,b) & (a,c) are in f^{-1} $\Rightarrow (b,a)$ & (c,a) are in f $\Rightarrow bine -1 b=c$ $\Rightarrow bine$	set of pairs (a,b) s.t. (b,a) 18 in 5		
Suppose (lest) & Ca, C) are in f^{-1} $\Rightarrow 7(b,a) & (c,a) are in f$ $\Rightarrow 2 \text{ Mine } f^{-1} \text{ b=c} \text{ in}$ $\Rightarrow \text{ Mine } f^{-1} \text{ Suntine}$	$\Rightarrow \int_{a}^{-1} (a) = b \text{if} \int_{a}^{-1} (b) = a$		
Suppose (lest) & Ca, C) are in f^{-1} $\Rightarrow 7(b,a) & (c,a) are in f$ $\Rightarrow 2 \text{ Mine } f^{-1} \text{ b=c} \text{ in}$ $\Rightarrow \text{ Mine } f^{-1} \text{ Suntine}$	7 m / (-1 -7 -6) 11 / (-1 -7 -6)		
Suppose (a,b) & (a,c) are (a,b) & (a,c) are (a,b) \(\frac{1}{2}\) $\Rightarrow (b,a)$ & (c,a) are (a,b) & (c,a) are (a,b) & (c,a) are (a,b) & (c,a) & (c,a) are (a,b) & (c,a) & $(c,$	0,70 a		
$\Rightarrow 7 (b,a) & (c,a) are in f$ $\Rightarrow \Rightarrow are f' Sentine$ $\Rightarrow are f' Sentine$	allune 1-1		
=> Mue fil Suntim => Mue fil Suntim fi A→ B and fils mjecture			
5. A→ B and 5 is mjectre			
	5: A→ B and 5 is milectre		
$J \cdot \mathcal{A}(A) \longrightarrow \mathcal{A}$			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Madnasday April 26 2022
Wednesday, April 26, 2023
Wednesday, April 26, 2023 10:09 AM
$1.) L(f, P) \le U(f, P)$
2.) $L(f, P) \leq L(f, Q)$ when $P \subseteq Q$
3.) $U(f,P) \ge U(f,Q)$ when $P \subseteq Q$
Theorem,
Let P_1 and P_2 be paritiions of $[a, b]$ and f bounded on $[a, b]$ Then. $L(f, P_1) \leq U(f, P_2)$
$L(f, P_2) \le U(f, P_1)$
-0/-2j = -0/-1j
Dun of
Proof $Let \ P = P_1 \cup P_2, then \ P_1 \subseteq P_2 \subseteq P$
$\therefore L(f, P_1) \le L(f, P) \le U(f, P_2)$
(2) (1) (3)
Corollary: If f is bounded on [a,b] then
Sup $\{L(f,P): P \text{ is a partition of } [a,b]\} \leq Inf\{U(f,P): P \text{ is a parition of } [a,b]\}$
$Sup(L(f,P)) \le Inf(U(f,P))$
Definition: Let $f:[a,b]$ be a bounded function
f is integrable on $[a,b]$ is:
$\alpha = Sup(L(f,P)) = Inf\{U(f,P)\}$
In this case the integral of f on $[a,b]is$
$\int_{a}^{b} f = \alpha$
J_a
Properties:
For all parititions P of $[a,b]$
$1.) L(f, P) \le \int_a^b f \le U(f, P)$
2.) $\int_a^b f$ is unique (if it exists)
Theorem: If f is bounded on [a, b]then f is integrable on [a, b]if and only if $\forall \epsilon >$
0 there exists a partion P of [a, b] such that $U(f,P) - L(f,P) < \epsilon$
Example
Prove that $\int_a^b c \cdot dx = c \cdot (b-a)$

	Consider $f(x)$	$(x) = x \text{ for } x \in [a, b]$	b]				
		integrable on [a	, b]? it i	s bounded as a	$\leq f(x) \leq b$, and	non empty	
	What is	$\int_a^b f = ?$					
Pro		$d.P \coloneqq \{0, t_1, t_2, \dots$	t b) b	a a nartition			
		a. $t := \{0, t_1, t_2,$ ad $\{t_1, t_2, t_{n-1}\}$ s			< ε		
	U(f,P)	$)-L(f,P)=\sum_{i=1}^{n}($	$M_i)(t_i-t_i)$	$(m_i) - \sum_{i=1}^{n} (m_i)(t_i)$	$(t_{i-1}) = \sum_{i=1}^{n} (M_i)$	$(t_i - m_i)(t_i - t_{i-1})$)
		i=1		i=1	$\overline{i=1}$		
For	$f(x) = x$ $m_i = Inf\{x: t$	$t_{n-1} \le x \le t_i \big\} = 1$	t_{i-1}				
		$t_{n-1} \le x \le t_i \} =$					
	11(f D) 1(c	$f(n) = \sum_{i=1}^{n} (t_i + t_i)$)2	- (+ +) ² + (+	t) ² ((t	,) ²	
	U(f,P)=L(f)	$f,P\big)=\sum_{i=1}^{\infty}\big(t_i-t_i\big)$	(-1)	$= (\iota_1 - \iota_0) + (\iota$	$(\iota_2 - \iota_1) + \dots + (\iota_n)$	$n-\iota_{n-1}$	
	Then <i>Lets ass</i>	sume that pariti	on is unifo	rm for example	$e t_i = \frac{b}{n}i$ then		
	II(f P) — I.($(f,P) = \sum_{i=1}^{n} \frac{b^2}{n^2} =$	$\frac{b^2}{c} < \epsilon$				
	0 () ,1) 2($\sum_{i=1}^{n^2} n^2$	n `				

$= \frac{2}{2} (M_{i} - M_{i})(t_{i} - t_{i-1}) < \frac{2}{2} (t_{i} - t_{i-1}) = \frac{2}{2} (t_{n} - t_{i-1}) = \frac{2}{2} (t_$	(to)
SOM	
For $\hat{\xi} = \frac{\xi}{b-a}$ if we choose $P = \{t_0,, t_n\}$	
Such that $t_i - t_{i-1} < 3$ then	
$U(f, P) - I(f, P) \angle \hat{\mathcal{E}}(b-a) = \mathcal{E}$ $\Rightarrow \text{Integrable by the}$	
Theorem Let a < b / c If f is integrable on [a, b] & [b, c]	and whe vesa
$\int_{\alpha}^{\zeta} s = \int_{\alpha}^{b} s + \int_{0}^{\zeta} s$	
Theorem (Linearity of Integrals)	
Ily f and of are integrable on Ia,b] and CER then:	
Of togis integrable on [a,b] with	
(p (' ' ' (p ' ' ' p ' ')	

$\int_{a}^{b} \int_{a}^{b} + g = \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} g$
(2) Cof is integable on $[a_1b]$ with $\int_{a}^{b} c \cdot f = c \cdot \int_{a}^{b} f$
Theorem Let & be integrable on [a, b] and Say
$m \leq f(x) \leq M \qquad \forall x \in [a, b]$ then $m(b-a) \leq \int_{a}^{b} f \leq M(b-a)$
M Y partition P!
$L(f, p) \leq f^b f = V(f, p)$ $\int_{a}^{b} f = \int_{a}^{b} f = $
Theorem if f is integrable on $[a_1b]$ and we define $F(x) = \int_a^x f$ then F is continuous on $[a_1b]$
$f(\alpha) = \frac{1}{2} \times \frac{1}{2}$ $f(\alpha) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $f(\alpha) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $f(\alpha) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$ $f(\alpha) = \frac{1}{2} \times \frac$

									F	(x)											
					o f					,				,							
	i¥				- <i>fu</i>																
				2	=) F((x) =	× 0	=0	C							\rightarrow	2				
	ίf	1 ≤	X S	<u> </u>	the	27	(cx)	= \													
			É	⇒ FL	x) =	J.x {	= \(\frac{1}{0} \)	0 +	(× ,	ı u	χ-/										
							,	ع ۱۱ ۲	A	0	as	eps	s: lan	ge	.H						
							1	1-8	-		Sm. Sm	ellen llen	. Cr the	d . in:	tegra	l g	્લ :	te z	ere		