- Reading Quiz due before Class an füdany Sign up on piazza
1.) what is proof
2.) how doe math prove things....
3.)

Fer is conjecture
There we no positive Integers
$a, b, c \quad t \quad$ satisfy $a^{n}+b^{n}=c^{n}$
\forall Integer $n>2$

$$
\left\{\boxplus a, b, c \in \mathbb{Z}^{>0} \begin{array}{ll}
\text { st. } & a^{n}+b^{n}=c^{n} \\
& \text { for } \\
n \in \mathbb{Z}^{>c}
\end{array}\right\}
$$

Suppose $n=1 \quad a+b=c$
$a=1, b=2, c=3$ (proof by contradiction)

$$
n=2 \quad a^{2}+b^{2}=c^{2}
$$

Let $a=3, b=4, C=5 \longrightarrow 3^{2}+4^{2}=5^{2}$

$$
9+16=25
$$

1637 - Fermat said he can prove it
June 1993 - Wiles released proof
Sept 1994 - a corrected proof released
1995 - the final proof is published
\qquad

Flowchart:
Conjecture
Axioms
Definitions (Statements)

Proof

Conjecture / Proposition:
A mathematical statement that we do not yet know is true/false.
Definitions:
a statement of notation or terminology that we agree upon. (e.g. "positive integers" are numbers 1,2,3,4.......inf.)

Axioms:
a statement in mathematics we accept to be true but we cant prove it. (a statement taken to be true) (e.g. Axiom of equality) $\mathrm{x}=\mathrm{x}$, for all x .

Theorem: conjecture which has been proved.
(e.g. an odd integer x odd integer = odd integer)

Lemma: a smaller (less important) theorem \{a stepping stone\}
Corollary: Less important theorem that is proved as a direct result from the Theorem.

Properties of real numbers (\mathbb{R})
p.1) Cssouatrity of addition

$$
a+(b+c)=(a+b)+c
$$

P.2) Existance of the additive Identity

$$
a+\theta=Q+a=a
$$

P.3) Existance of additive inverse

$$
a+(-a)=(-a)+a=\theta
$$

P.4) Communtativity of additive

$$
a+b=b+a
$$

P.5) assonativity of Products

$$
a \cdot(b \cdot c)=(a \cdot b) \cdot c
$$

P.6) Existence of Product identity

$$
a \cdot 1=1 \cdot a=a
$$

P.7) Existanan of inverse

$$
a^{b} \cdot\left(a^{-1}\right)=\left(a^{\prime \prime}\right) \cdot a=\frac{a}{a}=1
$$

P.8) Commentative of Products

$$
a \cdot b=b \cdot a
$$

P.9) Distributatvity of products

$$
a \cdot(b+c)=a \cdot b+a \cdot c
$$

P.18) Trichotomy:
for every (\mathbb{R}) \& a
one and only one off the following halts
$D \subset$ Positre \mathbb{R}
i) $a=0$
ii) $a \in P$
$P \subseteq$ Positre \mathbb{R}
i) $a=0$
(ii) $a \in P$
cici) $(-a) \in P$
P.11) Clabure under adoition

$$
\begin{aligned}
& \text { of } a \in P \quad b \in P \\
& \text { then } \rightarrow(a+b) \in P
\end{aligned}
$$

P,12) Cloture under multiplication
If $a \in P$ \& \& $b \in P$
then $\rightarrow(a \cdot b) \in p$

Definitis
(D1) $a>b$ iff $(a-b) \in P$
(D2) $a<b$ iff $b>a$
(D3) $a \geqslant b$ if $\left\{\begin{array}{l}a>b \\ a=b\end{array}\right.$
(D4) $a \leq b$ if $\left\{\begin{array}{l}a<b \\ a=b\end{array}\right.$
(b5) $|a|=\left\{\begin{array}{rl}a & a \geqslant 0 \\ -a & a<0\end{array}\right.$
Theoem 1 For all numbers a \& b $\forall a, b \in \mathbb{R} \quad|a+b| \leqslant|a|+|b|$

- Sketch
cuses
(i) $a \geqslant 0, b \geqslant 0$
(ii) $a \geqslant 0, \quad b<6$
(iii) $\quad a<0, b \geqslant 0$
(iv) $a<0, b<0$
c) RHS

$$
\begin{align*}
& |a|+|b|=a+b \tag{D. 5}\\
& |a+b|=a+b \\
& \Rightarrow|a+b|=|n|+|b|
\end{align*}
$$

ii) RHS

$$
|a|+|b|=a-b
$$

Its

$$
|a+b|=\left\{\begin{array}{lll}
a+b & \text { if } & a+b \geqslant 0 \tag{b}\\
a-b & \text { if } & a+b<0
\end{array}\right.
$$

(ia)
we wont to shew $a+b \leq a-b$

$$
\begin{array}{r}
-a \quad-a \\
b \leqslant-b
\end{array} \Rightarrow b<0
$$

ib) we want to show $-a-b \leq a-b$
Def (Even)
an integer x is said to be even iff there exists an Integer a, St.

$$
x=2 a
$$

(odd)
an integer x is said to be odd if thee exists an Integer a, St.

$$
x=2 a+1
$$

Conjecture if $x \& y$ are positive odd Integers then $x \cdot y$ is also a positive add
$\exists a, b \in \mathbb{Z}$ St. $\begin{aligned} & x=2 a+1 \\ & y=2 b+1\end{aligned}$ by definition of odd
By Aubstitutin $\quad x \cdot y=(2 a+1) \cdot(2 b+1)$
by disterubive
assocmive

$$
\begin{aligned}
& x \cdot y=(4 a b+2 a+2 b+1) \\
& x \cdot y=2(2 a b+a+b)+1
\end{aligned}
$$

let $x \cdot y=z$
let $2 a b+a+b=c \quad z=2 c+1 \quad$ which is odd by definition

Def A set in maths is a collection of objects on elements
egg.

$$
\begin{aligned}
& S:=\{-1,0,1, \operatorname{Red}, A\} \\
& T:=\{\text { Blue, } B, 2\} \\
& R:=\{-1,0,0, A, \operatorname{Red}
\end{aligned}
$$

Deft two sets are equirilamt if they contain the same element, ignoring repetition / order
$-1 \in S \longleftarrow$ belongs to
$-1 * S \longleftarrow$ does not belong to
Def n A set is called a subset of another set \mathbb{R} If all elements in S are also in R

$$
S \subseteq R
$$

Def. A subset S of R is a proper subset it they're not equivalent $S \subset R$

N natural \#s
\mathbb{Z} integers
\mathbb{R} Rational $\left\{\frac{p}{q}: p, q \in \mathbb{Z}_{\text {st. }}, q \neq 0\right\}$
\mathbb{R} - real numbers
\& - complex

Def n Set A \& B
(i) Union of $A \& B$ is the set of elements in A or B

$$
A \cup B:=\{x: x \in A \text { or } x \in B\}
$$

(ii) Intersection of A and B is elements in both $A \& B$

$$
A \cap B:=\{x: x \notin A \text { and } x \in B\}
$$

(iii) Complement of A in B is the set of elements in B but not in A

$$
B \backslash A=\{x \mid x \in B \text { and } x \notin A\}
$$

(iv) Disjoint:

Suppose $A \cap B=\varnothing=\{ \}=$ NULL

$$
\longrightarrow A \& B \text { are disjoint }
$$

Logic theory

- Consider P\&Q are boolean indicators That is, $P \& Q$ can be either True (T) or False (F)

Implication $\Rightarrow y$
of P then Q
Bijection \Longleftrightarrow

P	Q	$P \leftrightarrow Q \mid$
T	T	T
T	F	F
F	T	F
F	F	T

P	Q	$P \rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

Direct $\rho_{\text {roofs }}$

- Sequence of tue statements moving prom hypothesis to conclusion

$$
\{p \rightarrow \text { true }\}
$$

* Prod by exhastion / bute froce is when you pave every possibility
* Proof by induction: Prove a conjecture far a discrete set of cases we wont to show

$$
\begin{aligned}
& \text { want to Show } \\
& 1^{2}+2^{2}+3^{2} \cdots \cdots \cdot n^{2}=\sum_{i=0}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

Base lase $n=1 \rightarrow$ True
assume $n=k$ is True IH.

$$
\star \sum_{i=0}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Prove for $x=k+1$

$$
\sum_{i=0}^{k+1} \xlongequal{2}
$$

$$
\begin{aligned}
Z H S=\sum^{k} i^{2}+(k+1)^{2} & \stackrel{*}{=}+(k+1)(2 k+1) \\
& =\frac{(k+1)}{6}\{k(2 k+1)+k+1\}
\end{aligned}
$$

$$
=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

By Induction TT

Indirect Proof
Stent by assuming negation
1.) Proof by convadico

Here assume the statement is false and show we find contradiction
assume P is tare
proof suppose $7 p$ is true but that is a contradict

Contrapositive
Conjecture $\quad P \rightarrow Q$
proof $\neg Q \rightarrow$

Q3 Let $x, f \in \mathbb{R}$
Show if $x \& y$ are rational
\rightarrow then $x+y$ are irs
Suppose $x=0$ and $y=1$
Both are rational
then $x+y=0+1=1$
since, 1 is rational this theory is false by counter example 口

Evleis Conjecture - (Fermat / Andrew wiles)
Let $a_{1} \ldots \ldots a_{n}, b, n, k$ be positive \mathbb{Z}
Then if $a_{1}^{k}+\ldots \ldots a_{n} k=b^{k} \Longrightarrow n \geqslant k$.
Proven False - by Counter Example

$$
\begin{array}{rlr}
\frac{1}{a}+\frac{1}{b} & =\frac{2}{a+b} & \\
\frac{b}{a b}+\frac{a}{a b} & =\frac{2}{a+1} & \\
\frac{b+a}{a b}=\frac{2}{a+b} & \left.\begin{array}{rl}
2 a b & =6+a(a+b) \\
& 2 a b
\end{array}\right)=b+a^{2}+a b \\
a b & =b+a^{2} \\
a b-a^{2} & =b \\
a(b-a) & =b
\end{array}
$$

Def: A function is a collection of ordered pairs of andened pairs of numbers SEt.
If (a, b) and (a, c) are in the collection then $b=c$

$$
(a, b)=\{\{a\}\{a, b\}\} \quad \text { I/ Chap. } 3
$$

(a, b) is described by the function

$$
a \stackrel{f}{\longrightarrow} b \text { or } f(a)=b \quad \longmapsto \text { imape } \quad \longrightarrow \text { to }
$$

A D $A B$ Domain of a function is the bet of all a for which there is $a \quad b$ S.E. (a, b) lives in collectrm

Codoman of a functor is the set of possible values lives. in the collection

not a functor

not a function

Def Let $f: A \rightarrow B$ be a function
(1) the image of set $X \leq A$
is defined as

$$
f(x):=\{f(a) \in B \mid a \in X\}
$$

(2) the pre-image of a set $\gamma \subseteq B$ is defined us $f^{-1}(Y):=\{a \in A \mid f(a) \in Y\}$

is defned us $f^{\prime \prime}(Y):=\{a \in A \mid f(a) \in Y\}$

$$
\begin{aligned}
f(a) & =\operatorname{Im}(f) \quad / 1 \text { imane of } f \\
A & =\operatorname{Dom}(t) \text { / DomaM of } F
\end{aligned}
$$

Let $f: A \rightarrow B \quad 28 \quad \gamma \leqslant B \rightarrow f^{-1}(y) \subseteq A$
Then $f\left(f^{-1}(r)\right) \neq Y$
Ex $\quad A:=\{1,2,3\} \quad B:=\{4,5,6\}$

$$
f(1)=4, f(2)=4, f(3)=4
$$

Then

$$
\begin{array}{ll}
\text { if } & x \leq A \\
& x:=\{1,2\} \\
f(x) & =\{4\}
\end{array}
$$

if

DetI (1) Surjective Conto)

$$
\text { if } f(A)=B
$$

Imaye $=$ codomain
(2) I is injectie (one-to-one) cniqueness it $f(x)=f(y) \Longrightarrow x=y$
(3) f is bijectie if it is surjective \& injectie

$$
h: \mathbb{R} \rightarrow \mathbb{R} \quad, \quad h(x)=\frac{5 x}{x^{2}+4}
$$

Domain =R
codomam $=R$
image of h
$\lim _{x \rightarrow \infty} h(x)=0 \quad \max$ min $e x=2$
(3)

$$
\begin{aligned}
& h(-2) \leq y \leq h(2) \\
& -5 / 4 \leq y \leq \frac{5}{4}
\end{aligned}
$$

not injective or surjectile

Def Let $f: A \rightarrow B$ be functions
(1) addition $(f+g)(x):=f(x)+g(x)$
where $x \in \operatorname{Dom}(f+g)$ which is $A \cap C$

$$
\begin{aligned}
& x \in\{A \cap C\} \\
& x \in A \cap x \in C
\end{aligned}
$$

(2) Product $(f \circ g)(x):=f(x) \cdot g(x)$
where $x \in \operatorname{Dom}(f+g)$
(3) Quotient $(f / g)(x)=\frac{f(x)}{g(x)}=f(x) \circ g^{-1}(x)$

Where $x \in \operatorname{Dom}(f / g):=A \cap C, x: g(x) \neq 0$
(4) Composition $(f \circ g)(x)=f(g(x))$
where $x \in \operatorname{Pom}(f \circ g)=\{x \in C: g(x) \in A\}$

Suppose

$$
\text { Suppose } \begin{aligned}
g(x) & =-x^{2} \\
f(x) & =\sqrt{x} \\
(f \circ g)(x) & =f(g(x))=\sqrt{-x^{2}} \\
\operatorname{Img}(y) & =x \leq 0 \\
\operatorname{Don}(y) & =\mathbb{R} \\
\operatorname{Dom}(f) & =x \geq 0
\end{aligned}
$$

Thus $\operatorname{Dom}(f \circ g)=\{0\}$
So $f(g(x)), \forall x \in \operatorname{Dom}(f \circ g)=0$
$\left\{\begin{array}{l}f(x)=C \leftarrow \text { Constant function } \\ g(x)=x \leftarrow \text { linear colentity }\end{array}\right.$

$$
h(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots \cdot a_{0}
$$

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R} & g:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R} \\
f(x)=x^{2} & g(x)=\tan x \\
\operatorname{Dom}(f)=\mathbb{R} & \operatorname{Dom}(g)=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
\operatorname{Im}(f)=\mathbb{R}^{\geqslant 0} & \operatorname{Im}(g)=\mathbb{R}
\end{array}
$$

if $10 \operatorname{Dom}(f)=\operatorname{Im}(f)$ then f is onto
$f:$ is not inject sp is not Surjective

$$
\begin{aligned}
& g: \text { injectiv } \\
& g: \text { surjective }
\end{aligned}>g \text { is bijectie }
$$

Problem 1 Let $f: A \rightarrow B$ be a functor

$$
C_{1} D \subseteq A
$$

Prove $\quad C \leq D \Longrightarrow f(c) \leq f(p)$
assume $C \subseteq D$
That is $\forall x, x \in C \Rightarrow x \in D$
tor $y \in f(C)$ show $y \in f(D)$

$$
\begin{aligned}
& \Rightarrow \exists x \in C \quad \text { St. } y=f(x) \\
& \quad \Rightarrow x \in D \Rightarrow f(x) \in f(D)
\end{aligned}
$$

(P2)Let $f: A \rightarrow B$ be a functor $U \leq B$
Show $f\left(f^{-1}(U)\right) \leq U$
Step 1 By permit $U \subseteq B$ means $\forall x, x \in V \Rightarrow x \in B$
Let $y \in f\left(f^{-1}(U)\right)$ then we wont to show $y \in U$
by definite $y \in f(A) \Longrightarrow \exists x \in A$ st. $y=f(x)$
So $\exists x \in f^{-1}(u)$ st. $y=f(x)$
by defintim $x \in f^{\prime \prime}(A) \Rightarrow \exists y \in A$ st. $x=f(y)$
So $\exists z \in U$ st. $z \doteq f(x)$
Finally $y=f(x)=z \Rightarrow f\left(f^{-1}(u)\right) \leq u$

Hypothetical Syllogism in
whish is what we un to show a

A solution if, is a mapping from domain A to Co.Domain B
$f: A \rightarrow B$ st. if $f(a)=b \quad \& \quad f(a)=c \quad f(a \in A, b \in B$ then $f=c$

Image of a set $x \in A$ is the set $f(x):=\{f(x) \in A: x \in X\}$
PreImaye of a set $\gamma \subseteq B$ is the set $f^{-1}(y):=\{x \in A: f(x) \in Y\}$

- A function is said to be subjective (onto) $f(a)=B$

$$
\text { ie. } \forall y \in B, \exists x \in A \text { st. } y=f(x)
$$

- A function is said to be Infective (ane to one) Let $a, b \in A$ then $f(a)=f(b) \Rightarrow a=b$

Bijection is Surjective / Injective

1. $f: A \rightarrow B$ and $C, D \subseteq A$
then $\quad C \leq D \Rightarrow f(C) \leq f(D)$
(is. if " $x \in C \Rightarrow x \in D$ " then " $x \in f(C) \Rightarrow x \in f(p)$ ")
2. $f: A \rightarrow B$ and $U \leq B$ Then

$$
\begin{gathered}
f\left(f^{-1}(u)\right) \leq u \leq f\left(f^{-1}(u)\right) \\
\text { Ci.e. " } \left.\left.x \in f\left(f^{-1}(u)\right) \Rightarrow x \in U U^{\prime}\right)\right\}
\end{gathered}
$$

Let $f: A \rightarrow B$ \& $\quad g: B \rightarrow C$
Then it f and g are bijective then fog is bijectile
Stall
Infective
Let $x, y \in A$ wont to show $\forall x, y \in A \quad(g \circ f)(x)=(g \circ f)(y) \Rightarrow x=y$

$$
\text { LH.S. } \quad(g \circ f)(x)=(g \circ f)(y)
$$

Let

Step 2
Subjective le. " $\forall y t C, \exists x \in A$ St- $y=(g \circ f)(x)$ "
Let $y \in C$
L.H.S. $\Rightarrow \exists \omega \in B$ S.t. $y=g(w) \longleftarrow g$ is surjective

$$
\Rightarrow \exists x \in A \text { s.t. } f(x)=w \mathbb{L} \text { is surjectie }
$$

$$
\Rightarrow y=g(f(x))=(g \circ f)(x) \longleftarrow \operatorname{def}{ }^{x} \text { composite }
$$

Deft Let $a, b \in \mathbb{R}$ and $a \leq b$
open interval is $(a, b):=\{x \mid a<x<b\}$
Closed interval is $[a, b]:=\{x \mid a \leq x \leq b\}$
Infinite interval $(a, \infty):=\{x \mid a<x\}$

$$
(-\infty, b]:\{x \mid x \leq b\}
$$

Jon example Interval of radius $\varepsilon \geqslant 0$ centered at a is

$$
(a-\varepsilon, a+\varepsilon):=\{x|\quad| x-a \mid<\varepsilon\}
$$

Distance: is the length of a segment between two points

$$
|a-b|=\sqrt{(a-b)^{2}}
$$

$$
\begin{aligned}
& x, y \in H \\
& \text { LH.S. } \quad(g \circ f)(x)=(g \circ f)(y) \\
& \Rightarrow g(f(x))=g(f(y)) \quad<\operatorname{det}^{\wedge} \quad \text { of composite } \\
& \begin{aligned}
\Rightarrow f(x) & =f(y) \\
\Rightarrow & x
\end{aligned} \quad \longleftrightarrow y \quad y \text { infective }
\end{aligned}
$$

Recall

$$
\begin{aligned}
& \text { Recall } \\
& \text { is } R=\{x \mid x \in R\}
\end{aligned}
$$

Def The Coordinate Plane

$$
\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y) \mid x ; y \in \mathbb{R}\}
$$

Where x thanes is a 'Direct product Direct Product:

Combines two sets to create a set for orderer pars

$$
\text { ie. } A \times B:=\{(a, b) \mid a \in A, b \in B\}]
$$

$<$ is a get

$$
\begin{aligned}
& A=(0,1) \\
& B=(0,1) \\
& A \times B:=\{(a, b) \mid \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& b \in(0,1),(0,1)\}
\end{aligned}
$$

Distance $\quad \frac{\sqrt{(a-b)^{2}}}{a}$

In Rd distance $(a, b),(c, d)$

$$
\sqrt{(a-c)^{2}+(b-d)^{2}}
$$

Def Let $f: A \rightarrow B / / A \leq B$

The graph of f is defined as $G(f)$

$$
\begin{aligned}
& G(f):=\{(x, f(x)) \mid x \in A\} \\
& G(f) \subseteq A \times B
\end{aligned}
$$

Example 1

$$
\begin{aligned}
& \frac{f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=x^{2}}{G(f):=\left\{\left(x, x^{2}\right) \mid x \in \mathbb{R}\right\} \leq \mathbb{R}^{2}}
\end{aligned}
$$

Example 2

$$
\begin{aligned}
f & = \begin{cases}1 & x \times 0 \\
1 / 2 & x=0 \\
0 & x<0\end{cases} \\
& \left.\left.=\frac{1 / 2}{4}(x) \right\rvert\, x<0\right\}
\end{aligned}
$$

$$
G(f):=\{(x, 0) \mid x<0\} \cup\{(0,1 / 2)\} \cup\left\{\left(0, \frac{1}{2}\right)\right\} \cup\{(x, 1) x \times 0\}
$$

Heauside / Step function

Power: $f(x):=x^{n}$ - Pegue
poly nominal! $f(x)=a_{n} x^{(n)}+a_{n-1} x^{n-1} \cdots a_{0}$
Rational foncotro $f(x):=\frac{P_{x}}{Q_{x}}$ where $P_{x} \& Q_{x}$ are Polynomial $\left(Q_{x}=0\right) \notin$ Domain
HW Hel?
Even function: $f(-x)=f(x) \forall x \in \mathbb{R}$

$$
\begin{aligned}
& \text { Recirodd } \\
& f(x+\alpha)=
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{ll}
1 & x \in \mathbb{Q} \\
0 & x \notin \mathbb{Q}
\end{array} \quad G(f)=\{(x, 1) \mid x \in \mathbb{Q}\} U\right. \\
& \{(x, 0) \mid x \notin \mathbb{Q}\} \\
& \sin \left(\frac{1}{x}\right) \\
& \square+ \\
& \sigma f: p>[-4,4] \\
& \begin{array}{c}
4 \\
2
\end{array}{ }_{0}{ }_{0} \\
& D:(-5,-1] \cup[2,4] \\
& \text { I: }(-4,1] \cup(2 \quad 4] \neq[-4,4]
\end{aligned}
$$

Horizontal Line Test Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ be a function
With graph $G(f) \backslash$ in $A \times B$
Let $L(b)$ be a horizontal line along $y=b$ in B
That is, $L(b)=\{(x, b) \mid x \backslash$ in $A\}$
1.) If f is injective \iff \forall b in $B . G(f)$ \cap $L(b)$ has at most one point. 2.) if f is surjective \iff \for b in $B G(f)$ \cap $L(b)$ has at least one point
3.) f is bijective \eff \backslash forall $b \backslash i n B G(f) \backslash c a p \backslash L(b)$ has only one point.

Circle, Hyoubola, Ellipses

Def a circle with centre (a, b) and radius r As the set of all points $(x, y) \in \mathbb{R}^{2}$
Whose distance to the center is γ

$$
\begin{aligned}
G & =\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{(x-a)^{2}+(y-b)^{2}}=\gamma\right\} \\
& \therefore \gamma^{2}=(x-a)^{2}+(y-b)^{2} \\
\Rightarrow & y_{0}=b+\sqrt{r^{2}-(x-a)^{2}}=f_{1}(x) \\
\Rightarrow & y_{2}=b-\sqrt{r^{2}-(x-a)^{2}}=f_{2}(x)
\end{aligned}
$$

Defir An Ellipse is set of points St. the sum of the distance from the two is consat. ie. - an ellipse with for $(-c, 0),(c c, 0)$
$2 a$

$$
\left\{(x, y) \in \mathbb{R}^{2} \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-r)^{2}+y^{2}}=2 a\right.
$$

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{R}^{2} \sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x-c)^{2}+y^{2}}=2 a\right. \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \Rightarrow b=a^{2}-c^{2}>0
\end{aligned}
$$

Def' A hyperabor is the set of point. SL- the difference of the atistates from the two for is constant

$$
\begin{aligned}
& \left\{(x, y) \in \mathbb{R}^{2}=\sqrt{(x+c)^{2}+y^{2}}-\sqrt{(x-c)^{2}+y^{2}}=2 a\right. \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 ; \quad b^{2}=c^{2}-a^{2}>0
\end{aligned}
$$

Tom's Tips
(1) Read the conjecture
i) work out the assumption "the if" part
ii) parse out the conductor "then blah" part
(2) Does it muse sense? (try to find contradictions
(3) Write down any solvent definitions/theovers a propeteres \rightarrow cent introduce anything else
(4) Move slowly from assumptions to Condusions
(5) Write it cleanly
(1) Let's assuno
(2) Bulk proof
(3) Conclusion of what you proved

Let $f: A \rightarrow B$ be a function
With graph $G(f) \subseteq A \times B$ and $L(b):=\{(x, a) \mid x \in A\}$ for $b \in B$
A.) f is injective $\Leftrightarrow G(f) \cap L(b)$ has \leq element $\forall b \in B$
recall: defintion of a graph $G(f):=\{(x, f(x)) \mid x \in A\}$
Ai) Assume f is injective. That is $\left(\forall a_{1}, a_{2} \in A f\left(a_{1}\right)=f\left(a_{2}\right) \backslash\right.$ implies $\left.a_{1}=a_{b}\right)$
Let $\left(a_{1}, b\right),\left(a_{2}, b\right) \in G(f) \cap L(b)$. $\backslash \backslash I$ want to show that $a_{1}=a_{2}$
By intersection definition $\left(a_{1}, b\right),\left(a_{2}, b\right) \in G(f)$
$b=f\left(a_{1}\right)=f\left(a_{2}\right)$
Because the function is infective $a_{1}=a_{2}$
Bi) Assume $G(f) \cap L(b)$ has ≤ 1
Take $a_{1}, a_{2} \in A$ s.t. $f\left(a_{1}\right)=f\left(a_{2}\right)\left[I\right.$ want to show that $\left.a_{1}=a_{2}\right]$
Then $\left(a_{1}, y\right),\left(a_{2}, y\right) \in G(f) \cap L(y)$
Therefore $\left(a_{1}, y\right)=\left(a_{2}, y\right)$ implies $a_{1}=a_{2}$

Informal idea of limits
f tends to a limit 1 nee a if we make $f(x)$ as close to L as we like by requiring that x is sufficiently close (but not equal) to a

So $f(x)$ is within an arbitrary distance from L
ie. $L-\varepsilon \leqslant f(x) \leqslant L+\varepsilon$
Provided x is within some distance $\delta=\operatorname{man}_{M}\{\delta, \delta\}$
from $a-\delta \leq x \leqslant a+\delta$

Deft: A fun
to

$$
f(x) \rightarrow L \text { as } x \rightarrow a \text { (or) } \lim _{x \rightarrow a} f(x)=L
$$

A function f tends to L as x tends to a if: For every ε xu thee is same $8>0$ str for all x $0<|x a|<\delta$ then $|f(x)-C|<\varepsilon$

Ex| Consider $f(x)=5 x$

Claim

$$
\lim _{x \rightarrow 2} f(x)=10
$$

for all $\varepsilon>0$ we ned to find $\underline{Q} \hat{\theta}(\xi)>0$

$$
\forall x|x-2|<\delta \Rightarrow|f(x)-10|<\varepsilon
$$

1.) Assume $|f(x)-10|<\varepsilon$ then .1. 1.,

1.) assume $|T(x)-10| \backslash 2$
then

$$
\begin{aligned}
& \Rightarrow|3 x-10|<\varepsilon \\
& \Rightarrow 5|x-2|<\varepsilon \\
& \Rightarrow|x-2|<\frac{\varepsilon}{5} \\
& =\frac{\text { work }}{}
\end{aligned}
$$

2.) Let $\delta=\frac{\varepsilon}{5} \quad$ (guess)

$$
\begin{aligned}
& 0<|x-2|<\frac{\varepsilon}{2} \\
\Rightarrow & |5 x-10|<\varepsilon
\end{aligned}
$$

Consider: $f(x)=x^{2}$
Claim: $f(x) \rightarrow 4$ as $x \rightarrow 2$
That is, $\forall \epsilon>0$, we can find a $\delta>0$ s.t. $0<|x-2|<\delta$ implies $|f(x)-4|<\epsilon$

$$
\begin{aligned}
& \text { Guess work: }\left|x^{2}-4\right|<\epsilon \\
& =\Rightarrow\left|x^{2}-4\right|<\epsilon \\
& ==|x-2|<\epsilon|x+2| \neq \delta
\end{aligned}
$$

ξ cannot depend on X
assume $|x-2|<1 \Rightarrow 1<x 3$

$$
\rightarrow 3<x+2<5
$$

If $|x z|<1 \Longleftrightarrow|x+2|<5 \quad \Rightarrow|x+2|<5$

$$
\Leftrightarrow\left|x^{2}-4\right|=|x-5||x+5|<5|x-2|<\varepsilon
$$

We also wend $|x-2|<\frac{\varepsilon}{3}$ if we have (1) $|x-2|<1$
$\varepsilon<5$
Thus let $z=\min \{1, \varepsilon / 5\}$

$$
f(x)=\left\{\begin{array}{ll}
x & x \neq 0 \\
1 & x=0
\end{array}\right\} \text { as } x \rightarrow 0 \text { a } x(x) \rightarrow 0 \text { as }
$$

Wednesday, February 22, 2023
wednesday, February 22, 2023 9:55 AM

$$
H(x)=\left\{\begin{array}{cc}
1 & x>0 \\
1 / 2 & x=0 \\
0 & x<0
\end{array}\right.
$$

Heaviside
$\lim _{x \rightarrow 0} H(x) \quad$ Depends on if $x x$ or $x<0$

$$
\begin{aligned}
& H\left(0^{+}\right)=1 \\
& H\left(0^{-}\right)=0 \\
& H(0)=1 / 2
\end{aligned}
$$

Lemma

$$
\text { Let foe function } \lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=1 \Longleftrightarrow \lim _{x \rightarrow a} f(x)=1
$$

$$
f=1 / x \quad \lim _{y \rightarrow \infty} \frac{1}{x}=0 \quad \forall \varepsilon>0
$$

we need to find a $N \in \mathbb{R}$ st.

$$
x>N \Rightarrow\left|\frac{1}{x}-0\right|<\varepsilon
$$

Choose $N=\frac{1}{\varepsilon}$ Since $\quad x>\frac{1}{\varepsilon} \Rightarrow\left|\frac{1}{x}-0\right|<\varepsilon$
Example $\quad s:=1 / x$

$$
\begin{array}{r}
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty \quad \forall m \in \mathbb{R}, \exists \frac{\xi}{j}>0 \mathrm{St} . \\
\sigma<x-0<\delta \Rightarrow f(x)>m \\
\frac{1}{x}>m \\
\\
\begin{array}{c}
c h o o d \\
\xi=\frac{1}{m}
\end{array} x<\frac{1}{m}
\end{array}
$$

Deft:

Def $^{\boldsymbol{n}}:$
$: f \rightarrow \infty$ as $x \rightarrow \infty$
: A function f cannot approach two limits.
If limit $x \rightarrow a f(x)=L_{1}$ \& limit $x \rightarrow a f(x)=L_{2} \Rightarrow L_{1}=L_{2}$

Math 421: Problem Sheet 4
Deadline: Feb. 24th at 11:59pm
Solutions to this problem sheet must be typed up in $L T_{E} X$ and uploaded to Canvas as PDF. Some $L T_{E} X$ resources can be found here. Please contact the instructor (Dr Thomas Chandler, tgchandlerQwisc.edu) via Canvas or email, if there are any problems uploading the solutions.

1. Graph plots [8 points]

Consider the following graphs of a function $f: D \rightarrow-24]$ where $D \subseteq[-2,2]$:

D is the domain

$$
(-1,-1 / 2) \cup[0,2]
$$

For each graph, answer the following questions (no proof is needed):
(i) What is the domain of f ? $[-1,2)$
(ii) What is the image of f ?
(iii) Is f injective?
(iv) Is f surective $I \mathrm{mg}=\left(0^{-d N^{2}}\right.$
a. wo a) F , b. F
2. Graph manipulation [12 points]

Let f and g be functions and $c \in \mathbb{R}$. Describe the graph of g in terms of the graph of f in the following cases:
(a) $g(x)=f(x)+c \quad g(x)$ is $f(x)$ shafted up by
dilation $g(x)=c f(x) \quad g(x)$ is $f(x) \begin{aligned} & \text { dilated } \\ & \text { lon }\end{aligned}$
(b) $g(x)=f(x+c) \quad g(x)$ is $s(x)$ Shit ad eff b of c
(d) $g(x)=f(c x) g(x)$ is $f(x)$ Stretched by $($
(f) $g(x)=|f(x)|$ - $f(x)$ is $g(x)$ with reflected
(e) $g(x)=f(|x|) g(x)$ is $f(x)$ reflected by $f(x)$ reflected axis
oof $\gamma_{x} x(x)<0$
Note that it may be important to distinguish between $c>0, c=0$, and $c<0$. $\begin{aligned} & \text { क he } \\ & \text { of } \\ & x\end{aligned}(x)<0$
3. Graph-function equivalence [15 points]

Let $f: A \rightarrow B$ and $g: A \rightarrow B$ be functions. The graph of f is defined as the set of ordered pairs

$$
G(f):=\{(x, f(x)): x \in A\} \subseteq A \times B
$$

Show that f and g are equal (ie. $f(x)=g(x) \forall x \in A$) if and only if $G(f)$ and $G(g)$ are equivalent (ie. $(x, y) \in G(f) \Longleftrightarrow(x, y) \in G(g)$).
4. Parabola [15 points]

Let L denote the graph of the constant function $g(x)=\gamma \in \mathbb{R}$ (ie. a horizontal line) and \underline{P} denote the point $(\alpha, \beta) \in \mathbb{R}^{2}$ not on the line (i.e. $\left.\beta \neq \gamma\right)$. Show that the set of all points, $(x, y) \in \mathbb{R}^{2}$, which are equidistance from L and P is the graph of the function $f(x)=a x^{2}+b x+c$. What happens if $\beta=\gamma$?

$$
\begin{aligned}
& G(A):\left\{\left(x, f(x) \in R^{2} \backslash x \in k-x, 0^{2}\right\}\right. \\
& \left.\cup\left\{(-x, f(x)) \in \mathbb{R}^{2} \mid x \in \mathbb{R},\right\}\right\}
\end{aligned}
$$

take (x, y) equidistant distance $\underset{1}{\mathcal{L}}$ and p
$\sqrt{(x-\theta)^{2}+(y-\beta)^{2}}$ // distance to Point P
$y-y / / d$ distance to of horizontal line

$$
\begin{aligned}
& \sqrt{(x-A)^{2}+(y-)^{2}}=y-r \\
& (x-x)^{2}-(y-E)^{2}=(y-2)^{2}
\end{aligned}
$$

Math 421: Problem Sheet 4

Deadline: Feb. 24th at 11:59pm
Solutions to this problem sheet must be typed up in $H T_{E} X$ and uploaded to Canvas as PDFs. Some $B T_{E} X$ resources can be found here. Please contact the instructor (Dr Thomas Chandler, tgchandler@wisc.edu) via Canvas or email, if there are any problems uploading the solutions.

1. Graph plots [8 points]

Consider the following graphs of a function $f: D \rightarrow[-2,4]$, where $D \subseteq[-2,2]$:

For each graph, answer the following questions (no proof is needed):
(i) What is the domain of f ?
(ii) What is the image of f ?
(iii) Is f injective?
(iv) Is f surjective?
2. Graph manipulation [12 points]

Let f and g be functions and $c \in \mathbb{R}$. Describe the graph of g in terms of the graph of f in the following cases:
(a) $g(x)=f(x)+c$
(b) $g(x)=f(x+c)$
(c) $g(x)=c f(x)$
(d) $g(x)=f(c x)$
(e) $g(x)=f(|x|)$
(f) $g(x)=|f(x)|$

Note that it may be important to distinguish between $c>0, c=0$, and $c<0$.
3. Graph-function equivalence [15 points]

Let $f: A \rightarrow B$ and $g: A \rightarrow B$ be functions. The graph of f is defined as the set of ordered pairs

$$
G(f):=\{(x, f(x)): x \in A\} \subseteq A \times B
$$

Show that f and g are equal (i.e. $f(c)=g(x) \forall x \in A)$ ff and only if $G(f)$ and $G(g)$ are equivalent (i.e. $(x, y) \in G(f) \nLeftarrow(x, y) \in G(g)$).
4. Parabola [15 points]

Let L denote the graph of the constant function $g(x)=\gamma \in \mathbb{R}$ (i.e. a horizontal line) and P denote the point $(\alpha, \beta) \in \mathbb{R}^{2}$ not on the line (i.e. $\beta \neq \gamma$). Show that the set of all points, $(x, y) \in \mathbb{R}^{2}$, which are equidistance from L and P is the graph of the function $f(x)=a x^{2}+b x+c$. What happens if $\beta=\gamma$?
rear Thy
a function f cannot approach Wed 03/01 - review class / midterm (6pm) two different limits @ a

$$
\lim _{x \rightarrow a} f(x)=l_{1} \lim _{x \rightarrow a} f(x)=L_{2} \Rightarrow l_{1}=l_{-2}
$$

Proof $\forall \varepsilon_{1}>0, \exists \delta_{1}>0$ st. $0<|x-a|<\varepsilon_{1} \Rightarrow\left|f(x)-L_{1}\right|<\varepsilon_{2}$

$$
\forall \varepsilon_{2}>0, \exists \delta_{2}>0 \text { S } 5-0<|x-a|<\varepsilon_{2} \Rightarrow\left|f(x)-L_{1}\right|<\varepsilon_{2}
$$

1.) Tune $\delta=\left\{\left\{, \delta_{2}\right\}\right.$

$$
\forall \varepsilon>0,0<|x-a|<a \Rightarrow\left\{\begin{array}{l}
\left|f(x)-l_{1}\right|<\varepsilon \\
\left|f(x)-l_{2}\right|<\varepsilon
\end{array}\right.
$$

2.) Assume $L_{1} \neq L_{2} / /$ proof by contradiction

$$
|x+y| \leq|x|+|y|
$$

Lat $\left|L_{1}-L_{2}\right|=0$
then

$$
\begin{aligned}
&\left|L_{1}-L_{2}\right|=|L_{1}-\overbrace{f(x)}^{0}+f(x)+L_{2}| \\
&=\left|\left(L_{1}-f(x)\right)+\left(f(x)+L_{2}\right)\right| \\
& \leq\left|f(x)-L_{1}\right|+\left|f(x)-L_{2}\right|<2 \varepsilon \\
& \Rightarrow\left|L_{1}-L_{2}\right|<2 \varepsilon=\left|L_{1}-L_{2}\right| \\
& \varepsilon=\frac{\left|L_{1}-L_{2}\right|}{2} \quad \text { contradration on }
\end{aligned}
$$

Tum Assume $\lim _{x \rightarrow a} f(x)=C \quad \lim _{x \rightarrow a} g(x)=M$
(1)

$$
\begin{aligned}
& \lim _{x \rightarrow a}(f+g)(x)=1+m \\
& \lim _{x \rightarrow a}(f \cdot g)(x)=1 \cdot m \\
& \lim _{x \rightarrow a}\left(\frac{f}{g}\right)(x)=1 / m
\end{aligned}
$$

Lemma
if $\left|x-x_{0}\right|<\varepsilon$ and $\left|y-y_{0}\right|<\varepsilon$
then $\left|(x+y)-\left(x_{0}+y_{0}\right)\right|<2 \varepsilon$
Proof $\left|(x+y)-\left(x_{0}+y_{0}\right)\right|=\left|x-x_{0}+y-y_{0}\right|$

$$
\leqq\left|x-x_{0}\right|+\left|y-y_{0}\right|
$$

$$
\underset{\substack{\text { triple } \\ \text { anpluility } \\ \text { mex }}}{ } \quad \pi<\varepsilon=2 \varepsilon
$$

Choose $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ then
$\forall \varepsilon>0 \quad 0<|x-a|<\delta \Rightarrow\left\{\begin{array}{l}|f(x)-L|<\varepsilon \\ |g(x)-m|<\varepsilon\end{array}\right.$
We want to show $|(f+g)(x)-(l+m)|<\varepsilon$

$$
\begin{aligned}
& \forall \varepsilon>0 \quad 0<|x-a|<\delta \\
& |(f+g)(x)-(L+m)|=|f(x)+g(x)-(L-m)|
\end{aligned}
$$

by triangle
thus

$$
\begin{aligned}
\forall \varepsilon>0, \exists \delta \text { St. } 0<|x-a|<\varepsilon \Rightarrow|(f+g)(x)-(L+m)| & <2 \varepsilon \\
& <\hat{\varepsilon} \text { for } \hat{\varepsilon}=\frac{1}{2} \varepsilon
\end{aligned}
$$

Than assume $\lim _{x \rightarrow b} f(x)=C \quad \lim _{x \rightarrow a} g(x)=6$
then $\lim _{x \rightarrow a}(f \circ g)(x)=C$
(1) $\forall \varepsilon_{1}>0 \quad \exists \xi,>0$ sf. $0<|x-b|<\xi_{1} \Rightarrow|E(x)-L|<\varepsilon$,
(2) $\forall \varepsilon_{2}>0 \quad \exists \varepsilon_{2}>0 \quad$ st. $\quad 0<|x-a|<\varepsilon_{2} \Rightarrow|g(x) \rightarrow|<\varepsilon_{2}$
we wont

$$
\begin{aligned}
& \forall \varepsilon>0 \exists \varepsilon,>0 \text { set. } 0<|x-a|<\varepsilon \Rightarrow|f(x)-l|<\varepsilon \\
& \forall \varepsilon>0 \exists \delta_{2}>0 \text { st. } 0<|x-a|<\delta_{2} \Rightarrow|g(x)-M|<\varepsilon
\end{aligned}
$$

we wont

$$
\forall \varepsilon>_{0} \exists \delta r_{0} \text { sec } 0<|x-a|<\delta \Rightarrow|f(g(x))-L|<\varepsilon
$$

proot
Let $\delta=\delta_{2} \& \varepsilon_{2}^{\varepsilon \text { is arb.tary }}=\delta_{1}$ So

$$
\begin{aligned}
0<|x-a|<\delta & \Rightarrow|g(x)-b|<\varepsilon_{2} \\
& \Rightarrow|f(g(x))-L|<\varepsilon_{1}=\varepsilon
\end{aligned}
$$

$$
\varepsilon_{1}=\varepsilon
$$

$$
\lim _{x \rightarrow a} x^{2}+5 x=a^{2}+5 a
$$

froof
reall $\quad|x-a|<\frac{\varepsilon}{5} \Rightarrow|5 x-5 a|<\varepsilon$

$$
\begin{gathered}
\left|x^{2}-a^{2}\right|<\min (1, \varepsilon / 5) \Rightarrow\left|x^{2}-a^{2}\right|<\varepsilon \\
|x-a|<\delta \Rightarrow\left|x^{2}+5 x-a^{2}-5 a\right|<\varepsilon
\end{gathered}
$$

proof of additen $\left\{\begin{array}{l}\text { it }\left\{\begin{array}{l}b \\ 0\end{array}|x-a|<\delta_{1} \Rightarrow|x-l|<\varepsilon / 2\right. \\ 0\end{array}\right.$

$$
\left\{\begin{array}{l}
i f\left\{0<|x-a|<\varepsilon_{2} \Rightarrow|g-m|<\varepsilon / 2\right. \\
\text { onen } \quad 0<|x-a| \xi \Rightarrow|(f+g)-(1+m)|<\varepsilon
\end{array}\right.
$$

wher $\delta=\min \left(\delta_{1}, \delta_{2}\right)=\min \left\{\frac{\varepsilon}{5}, \min \left\{1, \frac{\varepsilon}{5}\right\}\right\}=\min \left\{1, \frac{\varepsilon}{5}\right\}$
product

$$
\text { ff }\left\{\begin{array}{l}
0<|x-a|<\delta, \Rightarrow|f(x)-c|<\min \left\{1, \frac{\varepsilon}{2(|m|+1}\right\} \\
0<|x-a|<\delta_{2} \Rightarrow|g(x)-m|<\frac{\varepsilon}{2(\mid 4+1)}
\end{array}\right.
$$

ther

$$
O<|x-a|<\min \left(\varepsilon_{1}, \delta_{2}\right) \Rightarrow|f \cdot g-L \cdot m|<\varepsilon \text { 回 }
$$

$$
\begin{aligned}
& O<|x-a|<\operatorname{lin}\left(\varepsilon_{1}, \delta_{2}\right) \Rightarrow|f \cdot g-L \cdot m|<\varepsilon \\
& \lim _{x \rightarrow a} 5 x^{3}=\lim _{x \rightarrow a} 5 x \cdot x^{2}=5 a^{3} \\
& \delta_{1}=\frac{1}{3} \min \left\{1, \frac{\varepsilon}{2\left(a^{2}+1\right)}\right\} \quad \varepsilon_{2}=\min \left\{1, \frac{1}{5} \frac{\varepsilon}{2((1+3) a \mid}\right\}
\end{aligned}
$$

Monday, February 27, 2023
Monday, February 27, 2023
9:56 AM

Def n: A function is continuous at a if

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=f(a) \\
& \forall \varepsilon>0, \exists \delta>0 \\
& S t \cdot \forall x \\
& \quad|x-a|<\delta \rightarrow|f(x)-f(a)|<\varepsilon
\end{aligned}
$$

Def n: A function is discontinuous at a if not continuous
(1) $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$
(2) fa) not defined
(3) $\lim _{x \rightarrow a^{-}} f(a)=\lim _{x \rightarrow a^{+}} \neq f(a)$

1. $\mathrm{f}+\mathrm{g}$ is continuous at a
2. $f \cdot g$ is continuous at a
3. If $g(a) \neq 0$, then $1 \square g(a)$ is continuous @a
1.) LeCt $\lim _{x \rightarrow a} f(x)=C$ and $\lim _{x \rightarrow a} g(x)=M$
(1) $\lim _{x \rightarrow a}(f+y)(x)=C+m$
(2) $\lim _{x \rightarrow a}(f \cdot g)(x)=l \cdot m$
(3) $\lim _{x \rightarrow a}\left(\frac{1}{g}\right)(x)=\frac{1}{g(a)}, g(a) \neq 0$
proof
$f \& g$ are continas at a
\Rightarrow by def n

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=f(a) \\
& f \lim _{x \rightarrow a} g(x)=g(a)
\end{aligned}
$$

By That we have
(1) $\lim _{x \rightarrow a}(f+g)(x)=f(a)+g(a)=(f+g)(a)$
(2) $\lim _{x \rightarrow a}(f \circ g)(x)=f(a) \circ g(a)=(f \circ g)(a)$
(3) $\lim _{x \rightarrow a}\left(\frac{1}{g}\right)(x)=\frac{1}{g(a)}, g(a) \neq 0$
$\checkmark x \rightarrow a(++g)(x)=f(a)+y(a)=(J+g)(a)$
(2) $\lim _{x \rightarrow a}(f \circ g)(x)=f(a) \circ g(a)=(f \circ g)(a)$
(3) If $g(a) \neq 0 \lim _{x \rightarrow a}\left(\frac{1}{g}\right)(x)=\frac{1}{g}(a)$
$\because f+g$ by defn is continuous fog by defn is continuouy $\frac{1}{g}$ by detr is continow

Thm: \quad If g is continuous @ 1 and f is continuous @ $g(a)$

1. $f \circ g$ is continuous @ a

Proof recall

$$
\text { Thex } \lim _{x \rightarrow b} f(x)=L \quad \& \quad \lim _{x \rightarrow a} g(x)=b
$$

$$
\text { then } \lim _{x \rightarrow a}(f \circ g)(x)=L
$$

By assumpition/ defn of centinuity
(1) $\lim _{x \rightarrow a} g(x)=g(a)$
(2) $\lim _{x \rightarrow g(a)} f(x)=f(g(a))$

By $\ln ^{4} \lim _{x \rightarrow a}(f \circ g)(x)=f(g(a))=(f \circ g)(a)$
By defn of cont, we have fog is cont.

Recall $\lim _{x \rightarrow a} x=a$

$$
\therefore x \text { is cont. } e_{a}
$$

Polynomial $P(x)=a_{n} x^{n}+\ldots+a_{0}$ is continous it $\forall a \in \mathbb{R}$
\& (1) $x^{2}=x \cdot x$ is cont. at a by Th
(2) $x^{n}=x^{n-1} \cdot x$ is cont. at a by Th^{m}
(3) $a_{n} x^{n}$ is continuos at a by Th ${ }^{n}$
(4) $a_{n} x^{n}+\cdots \cdot+a_{0}$ is cont.

$$
|x-a|<\delta \Rightarrow\left|c_{1}-c_{2}\right|<\varepsilon
$$

Def $\boldsymbol{f}^{\boldsymbol{n}}: \mid$ A function f is continuous on (a.b)domain if continuousat $\forall x$

Def: A function f is continuous on (a, b)domain if continuousat $\forall x$
$\in(a, b)$..
$\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{v}\right) \quad \forall x_{0} \in(a, b)$
Def n: A function f is continuous on $[a, b]$ interval if:

1. f is continous on (a, b)

$$
\text { 2. } \lim _{x \rightarrow a^{+}} f(x)=f(a) \& \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

- polynomials are cont. on \mathbb{R}
- $\sin (x), \cos (x)$ or \mathbb{R}
- $\tan (x)$ is cont. on $\left(-\frac{\pi}{2}+n \pi, \frac{\pi}{2}+n \pi\right) \quad \forall n \in \mathbb{Z}$
$\theta \sqrt{x}$ is cont. $[0, \infty)$
$\begin{array}{ccc}-\sqrt[3]{x} \quad \cdots \quad 11 & \mathbb{R} \\ e^{x} \quad * \quad & \prime & 1 R \\ |x| & & \end{array}$
$\frac{P(x)}{Q(x)} \quad$ Dora

Problem Sheet 5 due next Fri. March 10
$\underline{D e f}{ }^{n}$
1.) f is continuous $a \operatorname{a} \in A$ if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

$\forall \epsilon>0, \exists \delta>0$ s.t., $\forall x,|x-a|<\delta \Rightarrow|f(x)-f(a)|$
2.) f is continous an (a, b) if continous at all $x \in(a, b)$
3.) f is continuous on $[a, b]$ if continous on $(a, b) \&$

$$
\begin{aligned}
& \lim _{x \rightarrow a^{+}} f(x)=f(a) \\
& \lim _{x \rightarrow a^{-}} f(x)=f(b)
\end{aligned}
$$

$\underline{T h}{ }^{m}$
$\underline{\underline{T h}} \boldsymbol{h}^{\boldsymbol{m}}$
Let f and g be continuous at a
Let f
be continous at $g(a)$ and g continous at a
1.) $f+g$ is continous at a
$f \circ g$ is contious at a
3.) $\frac{f}{g}$ is continous if $g(a) \neq 0$
$\underline{\boldsymbol{T}} \boldsymbol{h}^{\boldsymbol{m}}$
Let f be continous at a and $f(a)>0$
Then..
$f(x)>0 \forall x$ in some interval containing a

Proof Let $f(a)>0$ and f cont. ea

By deft of cent. $\forall \varepsilon>0, \exists \delta>x$ Styx

$$
|x-a|<\delta \Rightarrow|f(x)-f(a)|<\varepsilon
$$

$$
\Rightarrow f(a)-\varepsilon<f(x)<f(a)+\varepsilon
$$

Choose $\varepsilon=f(a) \quad f(a)-f(a)$
Since $\quad 0<f(x)<2 f(a)$

$$
f(a)>0 \Longrightarrow f(x)>0
$$

Let n be such that $\frac{1}{n}<\varepsilon$

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{l}
0 x * Q \\
f(0,1) \rightarrow R
\end{array}=\mathbb{1} \frac{1}{2} \text { if } x=\frac{p}{q}\right.
\end{aligned}
$$

prove that for any at $(0,1)$

$$
\lim _{x \rightarrow y} x(x)=0
$$

If true, then f is continuous at all a not in rational numbers, that is discontinuous at all a in rational numbers

Proof
we need to show $\forall \epsilon>0$, we can find $a \delta>0$
for what x is $f(x)>\varepsilon$

$$
\text { S.t. }|x-a|<\delta \Rightarrow|f(x)|<\epsilon
$$

$$
x \in S_{n}=\left\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \cdots \frac{1}{n-1}, \frac{2}{n-1}, \frac{n-2}{n-1}\right\} \text { by dofmutios of fincti }
$$

There is a closest element in S_{n} to a i.e. $x=\frac{p}{q} q<n$

$$
\begin{aligned}
& \Rightarrow \delta=\operatorname{Min}|a-x|, x \in S_{n} \\
& \text { By def }{ }^{n} \text { of } S_{n}, \forall x \text { s.t. } 0<|x-a|<\operatorname{Min}|a-x|, x \in S_{n} \\
& \Rightarrow|f(x)|<\frac{1}{n}<\epsilon
\end{aligned}
$$

Sprivar 5.9
$\stackrel{t}{ }{ }^{m}$

$$
\lim _{x \rightarrow a} f(x)=\lim _{h \rightarrow 0} f(a+h)
$$

What do we know?
as x approaches a
\checkmark Vim definition
\checkmark limits exist
Let $\lim _{x \rightarrow a} f(x)=2 \quad \sqrt[m]{\lim _{h \rightarrow 0}(a+h)=m}$
we want to show $2=m$
(1) $\forall \varepsilon>0 \quad \exists z>0$ s. t. if $\sigma<|x-a|<0$

- then $|f(x)-L|<\varepsilon$
$\forall \varepsilon>0 \exists z_{2}>0$ st. if $0<|h-0| 2 \theta \div 0<|h|<\delta$ then $\mid f($ ail $)-m \mid<\varepsilon$.

$$
\left\{\begin{array}{c}
h<\varepsilon \\
-h<\varepsilon
\end{array}\right.
$$

How to go from 1 to 2 ?

$$
\begin{array}{ll}
x \mapsto a+h & |x-a| \longmapsto|h| \\
\forall x \mapsto \forall h & f(x) \longmapsto f(a+h)
\end{array}
$$

(1)

$$
\begin{aligned}
& \forall \varepsilon>0 \quad \exists z>0 \text { st. if } \sigma<|(a+h)-a|<3 \\
& \text { then }|f(a+h)-L|<\varepsilon \\
& \vdots \\
& \forall \varepsilon>0 \exists z>0 \text { st. if } 0<|h|<z \\
& 0<|h|<z \text { then }|f(a+h)-L|<\varepsilon \\
& \text { So } \lim (1, .1)-1
\end{aligned}
$$

So

$$
\lim _{h \rightarrow 0} f(a+h)=L
$$

\therefore by unifuness of limits $L=m$

Tum let f be a function sc.

$$
\begin{align*}
& f(x+y)=f(x)+f(y) \\
& f(x)=x \\
& f(x, y)=x+y \\
& f(x)=x \\
& f(y)=y \\
& f(x)=x^{2}+1 \\
& f(x+y)=(x+y)^{2}+1=x^{2}+2 x y+y^{2}+1 \\
& \left.\begin{array}{l}
f(x)=x^{2}+1 \\
f(y)=y^{2}+1
\end{array}\right\}=x^{2}+y^{2}+2 \tag{1}
\end{align*}
$$

$f(x+y)=f(x)+f(y)$ and f is contimars e Q Q.
Then f is conturows for all a.
Proof

$$
\text { assume } \quad f(x+y)=f(x)+f(y)
$$

Q what is $t 60$

$$
f(x)=f(x+0)=f(x)+5(0)
$$

This $f(0)=0$
a what is $f(a)-f(b)$

$$
\begin{aligned}
& x_{i} a-b \Rightarrow f((a-b)+b)=f((a-b))+f(b) \\
& 1: 1 \Rightarrow f(\ldots)-f(a 1)+f(b)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x: a-b \Rightarrow f((a-b)+b)=f((a-b))+f(b) \\
f: b \\
f(a)=f(a-b)+f(b) \\
f(a)-f(b)=f(a-b)
\end{array} \\
& \lim _{x \rightarrow 0} f(x)=f(0)=0 \\
& \forall \varepsilon>0, \exists \delta>0 \text { S.l. it }|x|<\delta \Rightarrow|f(x)|<\varepsilon
\end{aligned}
$$

Assumption 2: $\lim _{x \rightarrow 0} f(x)=f(0)=0$

$$
\therefore \forall \varepsilon>0, \exists z>0 \text {, st. } \forall x,|x|<\partial \Rightarrow|f(x)|<\varepsilon
$$

Scratch work

$$
\begin{aligned}
\lim _{y \rightarrow a} f(y)=f(a), \quad & \forall \varepsilon>0, \exists \delta>0 \\
& \text { St. } \forall y, \quad|y-a|<g \Rightarrow|f(y)-f(a)|<\varepsilon
\end{aligned}
$$

Let $x=y-a$ the $|f(x)|=|f(y-a)|=|f(y)-f(a)|$

$$
\begin{aligned}
& \lim _{f \rightarrow a} f(y)=f(a) \\
& \forall \varepsilon>0, \exists B>0 \quad \text { St. } \forall \varepsilon>0, \exists \partial>0 \\
& \forall y \quad|y-a|<B \Rightarrow \mid f(y)-f a) \mid<\varepsilon_{0}
\end{aligned}
$$

Ton's Always think about what yer know/what your need to tho
$(0,1) \quad(1,2) \quad \neg(0,2)$

$$
f(x): \frac{1}{x}-1
$$

$$
f(x)=\{
$$

$$
f: \mathbb{R} \rightarrow R \quad f(x)=\left\{\begin{array}{l}
x, x_{x}^{\cos f(x)}
\end{array}\right.
$$

(8)

$$
\begin{aligned}
& \text { A real number is a set } \alpha \text {, of rational numbers, with the following four proper- } \\
& \text { ties: } \\
& \text { (1) If } x \text { is in } \alpha \text { and } y \text { is a rational number with } y<x \text {, then } y \text { is also in } \alpha \text {. } \\
& \text { (2) } \alpha \neq \emptyset \text {. } \\
& \text { (3) } \alpha \neq \mathbf{Q} \text {. } \\
& \text { (4) There is no greatest element in } \alpha \text {; in other words, if } x \text { is in } \alpha \text {, then there } \\
& \text { is some } y \text { in } \alpha \text { with } y>x \text {. } \\
& \text { The set of all real numbers is denoted by } \mathbf{R} \text {. }
\end{aligned}
$$

Let $f(0)=0$

$$
f(x)\left\{\begin{aligned}
0 & \rightarrow f(x)=0 \\
\neq 0 & \rightarrow \lim B N E
\end{aligned}\right.
$$

$$
f(x):\left\{\begin{array}{l}
0<x<1 \\
1 \times x<2
\end{array}\right.
$$

(2) $f(x)=\left\{\begin{array}{cc}-1 & x \in \mathbb{Q} \\ 1 & x \in \mathbb{Q}\end{array}\right.$
(3)

$$
f(x)= \begin{cases}x & x \in \mathbb{Q} \\ a & x \in \mathbb{Q}\end{cases}
$$

Friday, March 10, 2023
Friday, March 10, 2023 9:55 AM
March 15르 - $\mathbb{R} \varepsilon U$
complex Analysis
Theorem 1
If f is cont. on
$[a, b]$ and
$f(a)<0<f(b)$
then there is some
c in $[a, b]$
that $f(c)=0$
this example we see $y=1 / x$ which is a function but it is not continuous, so there is no $f(x)=0$.

Boljenis The oren
In this example if a and b are on an open interval then
disproves the notion

Class 20
Announcements: - Problem sheet 5 due Tonight
Last time we discussed 3 important Theorems!
Theorem 1-Internediabe Value Theorem
If f is Continuous on $[a, b]$ and $f(a)<0<f(b)$, then there exists a $C \in[a, b]$ such that $f(c)=0$.
Theorem 2-Bounded function Theorem
If f is Continuous on $[a, b]$ then the function is banded on $[a, b]$. (i.e. $\exists M>0$ s.6. $|f(x)| \leq M \quad \forall x \in[a, b]$)
Theorem 3 -Extreme Value Theorem
If f is Continuous on $[a, b]$, then fhas a global
Minimum and Maximum on $[a, b]$

The proofs of these theocens will be cone in Chapter 8 - After Spring Break!

Today Polynomials I
But first, a theoren - The generalized version
Theorem Internediabe Valve Theorem (General Case)
Let f be Continuous on $[a, b]$ and $\alpha \in \mathbb{R}$.
If either (1) $f(a)<\alpha<f(b)$ or (2) $f(b)<\alpha<f(a)$ then there is a $c \in(a, b)$ scchthet $f(c)=\alpha$.

Proof
[(1) $f(a)<\alpha<f(b)$. Define $g(x)=f(x)-\alpha$ for $x \in[a, b]$.
Then Since $f(x)$ and α are Continual on $[a, b]$, $g(x)$ is Continuous on $[a, b]$ (by Theorem frown last week)
Also, $g(a)=f(a)-\alpha<0<f(b)-\alpha=g(b)$.
This, by previous T^{n}, there is Some $c \in(a, b)$
Such 6 Lot $g(c)=0 \Rightarrow f(c)-\alpha=0$

$$
\Rightarrow f(c)=\alpha
$$

(2) $f(b)<\alpha<f(a)$. Sere with $g(x):=\alpha-f(x)$.

There ace many! Cool Consequences of these three Ghecrers.

For example Spivak discussed a Couple of neat ones about polynomials:
Proposition 1: Every positive number has a Square son i.e. If $\alpha>0$ then there is Sore x Such that $x^{2}=\alpha$.

Proposition 2: Let $P(x)=x^{n}+a_{n-1} x^{n}+\cdots+a_{0}$ be a pdynorial. If n is odd the $P(x)$ has agleast one coot.

Proposition 3: Let $P(x)=x^{n}+a_{n-1} x^{n}+\cdots+a_{0}$ be a pdynerrial. If n is even then there is a y Such that $P(y) \leq P(x)$ for all x.

Proposition 4: Let $P(x)=x^{n}+a_{n-1} x^{n}+\cdots+a_{0}$ be a polynomial. If n is even then there exists an M Such that: • $P(x)=C$ has afleast one Sol ${ }^{1}$ for $C \geqq M$

- $P(x)=c$ has @ solis for $c<M$.

Sadly we don't have tine to prove them all! Let's just do Proposition 2:
Proposition 2: Let $P(x)=x^{n}+a_{n-1} x^{n}+\ldots+a$ o be
a pdynonial. If n is oold the $P(x)$ has afleast one
coot.
Proof idea: We want to use IVT to show that there exists a C such that $P(c)=0$. To do this we need to show that $P(x)>0$ for sore points and $P(x)<0$ for some paints.

How? We can Consider very large Positive \& negative numbers. as $P(x) \approx x^{n}$ for large $|x|$.

Prog Consider $P(x)=x^{n}+a_{n-1} x^{n-1}+\cdots \cdot+a_{0}$. To apply IVT we need bo find a $x_{0}, x_{1} \in \mathbb{R}$ Such that $P\left(x_{0}\right)<0<P\left(x_{1}\right)$.
First Note that $P(x)=x^{n}\left(1+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right)$
Now we would like to finch a Constant α Such blob $\left|1+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right| \leqslant \alpha$ for $|x|$ Large Why? well then $P(x)$ will be bounded by x^{n} just To de this note
$*=\left|\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right| \leq \frac{\left|a_{n-1}\right|}{|x|}+\cdots+\frac{\left|a_{0}\right|}{|x|^{2}}$
Now (1) Let $|x|>1 \Rightarrow|x|^{n}>|x| \Rightarrow \frac{1}{|x|^{n}}<\frac{1}{|x|}$
$\Rightarrow *<\frac{\left|a_{n-1}\right|}{|x|}+\cdots+\frac{\left|a_{c}\right|}{|x|}$
(2) Let $|x|>2 n\left|a_{i}\right|$ for $i=0,1,2, \ldots, n-1$.
$\Rightarrow \frac{\left|a_{i}\right|}{|x|}<\frac{1}{2 n}$ for $i=0,1,2 \ldots, n-1$.
$\Rightarrow *<\underbrace{\frac{1}{2 n}+\cdots++\frac{1}{2 n}}=\frac{1}{2}$.

So if $|x|>\operatorname{Max}\left\{1,2 n\left|a_{0}\right|, 2 n\left|a_{1}\right| \ldots, 2 n\left|a_{n-1}\right|\right\}$
Then $\left|\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right|<\frac{1}{2}$
$\Rightarrow \quad-\frac{1}{2}<\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}<\frac{1}{2}$
$\Rightarrow \quad \frac{1}{2}<1+\frac{a_{n-1}}{x}+\cdots+\frac{a c}{x^{n}}$

Finally we have a bound! So Let's choose $x_{0} \& x$, -Let $x_{1}>0$ and $\left|x_{1}\right|>M_{k x}\left\{1,2 n\left|a_{0}\right|, \ldots, 2_{n}\left|a_{n-1}\right|\right\}$ we then have by above

$$
\begin{aligned}
& \frac{x_{1}^{n}}{2}<x_{1}^{n}\left(1+\frac{a_{n-1}}{x_{i}}+\cdots+\frac{a_{0}}{x_{1}^{n}}\right)=P\left(x_{1}\right) \\
\Rightarrow & P\left(x_{1}\right)>\frac{x_{1}^{n}}{2}>0 \leftarrow Y_{a y}!
\end{aligned}
$$

- Let $x_{0}<0$ and $\left|x_{0}\right|>\operatorname{Max}\left\{1\right.$, in $\left|a_{d}\right|, \ldots$, in $\left.\left|a_{n-1}\right|\right\}$ We then have by above:

$$
\begin{aligned}
& \frac{x_{0}^{n}}{2}>x_{0}^{n}\left(1+\frac{a n-1}{x_{0}}+\cdots+\frac{a_{0}}{x_{0}^{n}}\right)=p\left(x_{0}\right) \\
& \hat{S}_{\text {Switches }} \text { direction as } x_{0}^{n}<0 .
\end{aligned}
$$

$$
\Rightarrow P\left(x_{0}\right)<\frac{x_{c}^{n}}{2}<0 . \leftrightarrow Y_{0 y}!
$$

Overall as $P\left(x_{0}\right)<0<P\left(x_{1}\right)$ and P is Continuous on $\left[x_{0}, x,\right]$. By IVT there exists a

$$
\left.x \in\left[x_{0}, x_{1}\right] \text { such that } P(x)=0!-y_{\text {ag }}!\quad \square\right]
$$

Q: Why does's this work for n even?

$$
\left[A: \quad x_{0}<0 \Rightarrow x_{0}^{n}>0\right.
$$

Have a good Spring Recess!

Def A set $A \subseteq \mathbb{R}$ is bounded above if there exists

$$
x \in \mathbb{R} \text { st. } x \geqslant a, \forall a \in A
$$

- Upper bounds for A

$$
[2,4) \cup(7,10]
$$

Defy A set $A \leqslant \mathbb{R}$ is bounded below if $\exists \hat{x} \in \mathbb{R}$ St. $\hat{x} \leqslant a \quad \forall a \in A$
Corer bound
DC fy
A $x \in \mathbb{R}$ is a least upper baud $\equiv \operatorname{Supremum} \equiv \operatorname{Sup}(A)$
(1) x is an upper fond for A
(2) If y is an upper bond for A, then $x \leq y$

Dep n
$x \in \mathbb{R}$ is the greatest lower bound ar infimum or $\operatorname{Inf}(A)$ of A
(1) if x is a lower boche
(2) If y is a loweerbound for A then $x \geqslant y$

$$
A=(0,1)
$$

$$
\begin{aligned}
& \operatorname{Sup}(A)=1 \\
& \operatorname{Inf}(A)=0
\end{aligned}
$$

1 a Set doesn't heed to have a maximum on minimum but if it is bounded then it does have a Sup and Inf
maximum \& minimum \longrightarrow sup \& Inf
Sup $\& \operatorname{Inf} \longrightarrow \max \& \min$

If for all $M<x$ there exists an $a \in A$ st. $m<a$
What is $\operatorname{Sup}(\phi)=$ undefined

$$
\operatorname{Int}(Q)=\text { undefined }
$$

$\forall x \in \mathbb{R}$ we have $a \leq x$ for all $a \in Q$
$\forall x \in \mathbb{R}$ we have $a \geqslant x$ for all $a \in \theta$
$[P 13]$ If $A \leq \mathbb{R}$, non-empty $(A \neq 0)$ and is bounded above then A has a least upper bound.
aka the least upper bound property
Does the fallowing subset of Ch have a least upper bouncl?

$$
\left\{x \in C h: x^{2}<2\right\} \leq a
$$

Does not have a least upper bound for rations \#

$$
\sqrt{2} \notin \mathbb{Q}
$$

To prove the intermediate value theorem (IVT) we need a lemma
Lemma - Suppose f is continuous at a
Then

$\exists \delta$ s.t. $x \in R,|x-a|<\delta \Rightarrow f(x)>0(f(x)<0)$
IVT - if f is continuous on $[\mathrm{a}, \mathrm{b}]$ and $\mathrm{f}(\mathrm{a})<0<\mathrm{f}(\mathrm{b})$ then there exists $c \in(a, b)$ s.t. $f(c)=0$
Proof
Construct a bounded \& non empty set (then use P13)
$A::=\{x \in[a, b]: f(y)<0 \forall y \in[a, x]\}$

If $A \leq \mathbb{R}$ uses non-cmaty and bounded above then A has a least upper-bound
Lemma Suppose f is cont. at a. If $f(a)>0(\operatorname{ar} f(a)<0)$, then there exists $a \vec{B}>0$ st. $|x-a|<3 \Rightarrow f(x)>c($ ar $f(x)<c)$

Theorem (IVT) of f is cont. or $[a, b]$ and $f(a)<0<f(b)$ then $\exists c \in[a, b]$ St. $f(c)=0$

$$
A=\{x \in[a, b] \mid f(y)<0 \quad \forall y \in[a, x]\}
$$

(1) $a+A$ since $f(y)<0 \quad \forall y \in[a, a]=\{a\}$
(2) Bounded Since $A \leq[a, b]$
$P B B C=\operatorname{Sup}(A)$ by trichotomy

$$
f(c)<0, f(c)=c, f(c)>0
$$

Proof
Glume for Contradiction $f(c)<0$
lemma $\Rightarrow \exists \delta>$ st. $|x-c|<0 \Rightarrow f(x)<0$

$$
\Rightarrow-1 \quad=\quad c<x,<c+0 \Rightarrow f(x)<0
$$

$$
f(x)<0 \quad \forall x \in \quad(c-z, x,]
$$

Together $\Rightarrow f(x)<0 \quad \forall x \in\left[a, x_{0}\right] \cup\left(c-3, x_{1}\right]=\left[a, x_{1}\right]$

$$
\begin{aligned}
& x_{1}>C \text { bf Defn} \text { of } x_{1} \\
& x_{1} \in A \text { by def n of } A
\end{aligned}
$$

Got this is a contradirlio to $c=\operatorname{Sep}(A)$ because $x \in A$ but $x>c$

Part 2 (1) Assume for contradiction $f(c)>0$
recall lama $\Rightarrow \geq z<c$ st. $f(x)>$ for $x \in(c-b, c+z)$

$$
\begin{aligned}
C= & \operatorname{Sup}(A) \Rightarrow \exists x_{0} \in(c-s, c) \text { S.t. } f(x)<0 \text { for } x \in\left[a, x_{0}\right] \\
\Rightarrow & f\left(x_{0}\right)>0 \text { as } x_{0} \in(l-z, c+B) \\
& f\left(x_{0}\right)<0 \text { as } x_{0} \in\left[a, x_{0}\right]
\end{aligned}
$$

$$
f\left(x_{0}\right)<0 \text { as } x_{0} t\left[a, x_{0}\right]
$$

Lemma Suppose f is cont, at a. Then $\exists b>c$ st. f is bounded on $(a-3, a+3)$
$\exists \mu>0$ St. $f(x)<m \quad \forall x \in(a-3, a+z)$

- Recall cont. function $\Rightarrow \lim _{x \rightarrow a} f(a)=a$
$\forall \varepsilon>0, \exists \delta>0$ SC. $\quad x \in(a-z, a+b)$

$$
\begin{aligned}
& \Rightarrow|f(a)-f(a)|<\varepsilon \\
& \Rightarrow f(a)-\varepsilon<f(x)<f(a)+\varepsilon
\end{aligned}
$$

Bounded function theorem
Th ${ }^{m}$ (BFT) Af f is cont. on $[a, b]$
then f is bounded above.
$\exists M \geq 0$ st. $f(x)<m \quad \forall x \in[a, b]$
Proof $A=\{x \in[a, b] \mid f$ is bounded above $[a, x]\}$
(1) non-empty $a \in A \Rightarrow f(a)<f(a)+1$
(2) Bounded above by 6
$\Rightarrow P B$ hades, let $C=\operatorname{Sup}(A)$
we want to show $c=6$
assume for contradiction $c<b$
Lemma $\exists z>0$ St. f is bounded above on $(c-b, c+b)$
$\Rightarrow \forall x \in[c, c+\delta) \quad f$ is bounded above on $\left(c-z+x_{1}\right]$
$C=\operatorname{Ses}(A) \Rightarrow \exists x_{0} \in(C-z, C)$ St. f is bounded above on

$$
\left[a, x_{0}\right]
$$

Toyetrar f is bounded above on

$$
\begin{aligned}
& {\left[a, x_{0}\right] \cup\left(c-z_{1} x_{1}\right]=\left[a, x_{1}\right] } \\
\Rightarrow & x_{1}>c \& x_{1} \in A
\end{aligned}
$$

Def n A function f is differituable if the following limit exists

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
\end{aligned}
$$

$$
\begin{aligned}
f(x)=\frac{1}{x} \quad f^{\prime}(x)= & \lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
= & \lim _{h \rightarrow 0} \frac{x-(x+h)}{h x(x+h)} \\
= & \lim _{h \rightarrow 0} \frac{-h}{h x(x+h)} \\
= & \lim _{h \rightarrow 0}-\frac{1}{x(x+h)}=-\frac{1}{x^{2}} \\
& f^{\prime}(x)=-x^{-2}
\end{aligned}
$$

Differentiable on $\mathbb{R} \backslash\{c\}$
contanous on $\mathbb{R} \backslash\{0\}$
Theorem of f is differentiable at a then f is continuous at a

Differentubiloty \Rightarrow continuity)
contrapositive

$$
\text { dis Continuity } \rightarrow \text { adifferantuble }
$$

Proof
assume: Diff ea
Prove: Cont © a
assume: Diff e a
prove: Cont © a

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{f(x)-f a)}{x-a}=f(a) \\
& \lim _{x \rightarrow a} f(x)=f(a) \\
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}[f(x)-f(a)+f(a)] \\
& =\lim _{x \rightarrow a}\left[\frac{(x-a)}{(x-a)}\{f(x)-f(a)\}+f(a)\right] \\
& =\lim _{x \rightarrow a}\left[(x-a) \frac{f(x)-f(a)}{x-a}+f(a)\right] \\
& =\lim _{x \rightarrow a}(x-a) \lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right)+\lim _{x \rightarrow a} f(a) \\
& =0 \times f^{\prime}(a)+f(a) \\
& \Rightarrow \lim _{x \rightarrow a} f(x)=f(a) \quad D \\
& \text { Suppose } f(x)=|x| \\
& =\left\{\begin{array}{cc}
x & x>0 \\
0 & x=0 \\
-x & x<0
\end{array}\right.
\end{aligned}
$$

Continues

$$
\begin{aligned}
\lim _{x \rightarrow a} \frac{|x|-|a|}{x-a} & = \begin{cases}\lim _{x \rightarrow a} \frac{x-a}{x-a} & a>0 \\
\lim _{x \rightarrow a} \frac{|x|}{x} & a=0 \\
\lim _{x \rightarrow a} \frac{-x+a}{x-a} & a<0\end{cases} \\
& = \begin{cases}1 & a>0 \\
-1 & a<0\end{cases}
\end{aligned}
$$

$f^{\prime}(0)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=-1$ left derivat.eve
$f^{\prime}\left(\sigma^{+}\right)=\lim _{x \rightarrow \sigma^{+}} \frac{|x|}{x}=1 \quad$ Right denvalive
f is defferimubl @a \Longleftrightarrow Reft derivative = Right derivative
function which is continues on \mathbb{R}

$$
\text { Differential an }\}
$$

Weierstrass Junction

$$
f(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} n x\right)
$$

for $a t(0,1), b$ od integer

$$
a \cdot b>1+\frac{3 \pi}{2}
$$

Let f g g be differentiable at a_{1} and

$$
f(a)=g(a) \quad g^{\prime} \quad f^{\prime}(a)=g(a)
$$

Prove that $K(x)= \begin{cases}f(x) & x \leqslant a \\ g(x) & x>a\end{cases}$
is Continuosis \& Differentiable it a
That is $\lim _{x \rightarrow a} F(x)$ exists $\Longleftrightarrow \lim _{x \rightarrow a} F(x)=\lim _{x \rightarrow a^{+}} F(x)$
Ceft-Lew $\lim _{x \rightarrow a^{-}} \frac{k(x)-k(a)}{x-a}=\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a}$

Weft - Hew

$$
\begin{aligned}
\lim _{x \rightarrow a^{-}} \frac{R(x)-K(a)}{x-a} & =\lim _{x \rightarrow a^{-}} \frac{f(x)-f(a)}{x-a} \\
& =f^{\prime}(a)
\end{aligned}
$$

Righef-derv $\lim _{x \rightarrow a^{+}} \frac{k(x)-k(a)}{x-a}=\lim _{x \rightarrow a^{+}} \frac{g(x)-g(a)}{x-a}=g^{\prime}(a)$
as $g^{\prime}(a)=f^{\prime}(a), k$ is differatioble

Monday, April 3, 2023

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f(x)}{h}
$$

Differentiable \Rightarrow Centimes

Rule I

$$
f(x)=c \in R \text {, then } f(x)=c
$$

proof

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} \frac{c}{h}-\lim _{h \rightarrow 0} 0=0
$$

Role 2

$$
\text { If } f(x)=x \quad \text { then } \quad f^{\prime}(x)=1
$$

Prot $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=1 \quad 0$
Theorem (linearity of denvaties) $\rightarrow \frac{d}{d x}(x-f(x)+\beta g(x))$
Let f and g be ditterentintle a the $=x \cdot f(x)+\beta \cdot g^{\prime}(x)$ $f+q$ and cob are dittrawbile e a w / d
Rule 3$)(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$ prod

$$
\begin{aligned}
& \text { [Rn) }(f+g)^{\prime}(a)= \\
& \lim _{h \rightarrow 0}(f+g)(a+h)-(f+g)(a) \\
& =\lim _{h \rightarrow 0} \frac{f(a+h)+g(a, h)-t(a)-g(h)}{h} \\
& =\lim _{h \rightarrow c}\left[\frac{f\left(a H_{1}\right)-f(a)}{h}+\frac{g(a h h)-\text { yea })}{h}\right] \\
& \begin{array}{l}
\text { Since } f 8 g \text { diff.ea } \\
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}+\lim _{h \rightarrow 0} \frac{f(a+h)-g(a)}{h}
\end{array} \\
& \Rightarrow f^{\prime}(x)+g^{\prime}(x) \square
\end{aligned}
$$

Rule 4 (cf) $(a)=c \cdot f^{\prime}(a)$
= Consider

$$
\lim [G(x)+F(x)]=\lim _{x \rightarrow a} G(x)+\lim _{x \rightarrow a} F(x)
$$

true if the $\lim _{x \rightarrow a} G(x) \& \lim _{x \rightarrow n} F(x)$ lxists
Example $\lim _{x \rightarrow C} G(x) \& \lim _{x \rightarrow a} F(x)$ don't exist but

$$
\lim _{x \rightarrow a}\{G(x)+F(x)\}
$$

$$
\left.\begin{array}{l}
G(x)=\frac{1}{x-a} \\
F(x)=\frac{-1}{x-a} \\
G(x)+F(x)=c
\end{array}\right\} \begin{aligned}
& \text { Cocntea }
\end{aligned}
$$

Rull 1-4 $f(x)=a, x+a_{0}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d}{d x}\left(a_{1} x+a_{0}\right) \\
\text { Rule } 384= & a_{1} \frac{d}{d x}(x)+\frac{d}{d x}\left(a_{0}\right) \\
\text { Rule } \mid \&^{2}= & a_{1}+0=a_{1}
\end{aligned}
$$

fower Rule (Rule 5)
atf $f(x)=x^{n}$ then $f^{\prime}(x)-n x^{n-1}$ wher $n \in \mathbb{N}$
proot by dindudion ar Bimanial Thearem

- requars
procuct Pule

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} b^{i}
$$

$$
\begin{aligned}
& \text { ceall }\binom{n}{i}=\frac{n!}{i!(n-i)!} \\
& (a+b)^{n}= \\
& a^{n}+n \cdot a^{n-1} b+\frac{n(n-1)}{2} a^{n-2} b^{2} \\
& \\
& \ldots \ldots+n a b^{n-1}+b^{n}
\end{aligned}
$$

Proob Bypetwitu

$$
\begin{aligned}
& \left(x^{n}\right)^{-\quad \stackrel{y}{x} \text { pethntm }}=\lim _{h \rightarrow 0} \frac{(x+h)^{h}-x^{n}}{h} \\
& =\lim _{n \rightarrow 0} \frac{\left.x^{n}+n x^{n-1} \cdot \sqrt{3}\right)^{\frac{n(n-1)}{2}} x^{n-2} \sqrt{3} \cdots+\cdots x \mathbb{C}^{n-1}+\ln ^{n}-x^{n}}{\sqrt{6}} \\
& =\lim _{n \rightarrow 0}\left[n X^{n-1}+\frac{n(n-1)}{2} x^{n-2} L+\cdots+n x h^{n-2}+h^{n-1}\right] \\
& \begin{array}{l}
\text { by linemity } \\
\text { of hamint }
\end{array} n \lambda^{n-1}+0+c \cdots=n \chi^{n-1}
\end{aligned}
$$

[Rule 1-5]

$$
\begin{aligned}
f(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x+a_{0} \\
f^{\prime}(x) & =\frac{d}{d x}\left(-a_{1} \frac{d}{d x}(x)+\frac{d}{d x}\left(a_{0}\right)\right. \\
& =a_{n} \frac{d}{d x}\left(x^{n}\right)+a_{n-1} \frac{d}{d x}\left(x^{n-1}\right)+\cdots+a_{1}+0 \\
& =n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+a_{1}
\end{aligned}
$$

puer
teoule/
Rules
Theoren (Product Rule)

$$
\begin{aligned}
& \text { Let } f \&<g \text { bc dilf. @ a } \\
& \Rightarrow f-g \text { is diff.e a } \\
& \text { witu }(f \cdot g)^{\prime}(a)=f^{\prime}(a) \cdot g(a)+f(a)-g^{\prime}(a) \\
& (f \cdot g)^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h) \cdot g(a+h)-f(a) \cdot g(a)}{h} \\
& q(a+h) \\
& \text { add a mpoo~ } f(a+h) g(a)-f(a+h) g(a)
\end{aligned}
$$

add a pero~x $f(a+h) y(a)-f(a+h) g(a)$

$$
(f \circ g)^{\prime}(a)=\lim _{h \rightarrow 0}\left[\frac{f(a+h)-f(a)}{h} \cdot g(a)+f(a+h) \cdot \frac{g(a+h)-g(a)}{h}\right]
$$

$\left.\left.=\lim _{h \rightarrow 0}[g(a)] \cdot \lim _{h \rightarrow 0}\left[\frac{f(a+h)-f(a)}{h}\right]+\lim _{h \rightarrow c}[f(a+1)) \lim \right] \frac{y(a+h)-y(\cdots)}{h}\right)$

$$
=g(a) f^{\prime}(a)+f(a) f^{\prime}(a) \quad D
$$

Theosem (Reciparaal Rule) contiwurs i. linits exists Let g be deffentiable e a and $g(a) \neq 0$
then $\frac{1}{g}$ is affientuble $\xlongequal{7}$ a with
$\square f(x)=c \in \mathbb{R} \Rightarrow f^{\prime}(x)=0$
[2 $f(x)=x \Rightarrow f^{\prime}(x)=1$
$\underline{\mid \text { Rule } 7 \mid}\left(\frac{1}{g}\right)^{\prime}(a)=\frac{-g(a)}{g(a)^{2}}$
[3) $f(x)=g(x)+h(x) \Rightarrow f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)$ Inemit
$4 f(x)=c \circ g(x)^{\text {ta }} \quad \underset{C \in R}{ } \Rightarrow f^{\prime}(x)=c \cdot g(x)$ \}b deanc.
5 $f(x)=x^{n}$ tor $n \in \mathbb{N} \Rightarrow f^{\prime}(x)=n x^{n-1}$ powe Role
(6) $f(x)=g(x) h(x) \Longrightarrow f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x) \quad$ Prowut te.te
$17 \begin{aligned} & f(x)=1 / g(x) \Rightarrow f^{\prime}(x)=-g^{\prime}(x) / g(x)^{?} \\ & f(x)=g(x) \Rightarrow f^{\prime}(x)=g^{\prime}(x)\end{aligned}$
$8(x)=g(x) \Rightarrow f^{\prime}(x)=-g^{\prime}(x) / g(x)^{2}$
$8 \quad f(x)=\frac{g(x)}{h(a)} \Rightarrow f^{\prime}(x)=g^{\prime}(x) / h(x)-\frac{g(a) h^{\prime}(x)}{h(x)^{2}}$
$(f \circ f)^{\prime}(a)=g^{\prime}(a) f^{\prime}(g(a))$

$$
=\lim _{h \rightarrow 0} \frac{g(a)-g(a+h)}{g(a) g(a+h) h}
$$

$$
=\lim _{h \rightarrow 0}\left[-\frac{g(a+h)-g(a)}{h} \frac{1}{g(a) g(a+h)}\right]
$$

$$
=-\lim _{h \rightarrow c}\left(\frac{g(a+h)-g(a)}{h}\right) \lim _{h \rightarrow 0}\left(\frac{1}{g(a)) g(a+h)}\right)
$$

$$
=-g^{\prime}(a) \cdot \frac{1}{g(a)^{2}}
$$

Theoren (Gootiant Rule)
Let I and f be differentiable © a, g $g(a)=0$. Then f / g is differenticble at a woth

$$
\begin{aligned}
& \text { [Rule } g](f / g)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-g^{\prime}(a) f(a)}{g(a)^{2}} \\
& \left(f \circ \frac{1}{g}\right)^{\prime}(a)=f^{\prime}(a) \cdot \frac{1}{g(a)}+f(a)^{\circ} \cdot\left(\frac{-g^{\prime}(a)}{g(a)^{2}}\right)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& \left(\begin{array}{rl}
\left(\frac{f}{g}\right)^{\prime}(a) & \stackrel{\text { Produrt Rle }}{ } f^{\prime}(a) \cdot\left(\frac{g}{g}\right)(a)+f(a) \cdot\left(\frac{1}{g}\right)^{\prime}(a) \\
& =\frac{\prime^{\prime}(a)}{g^{\prime}(a)}-\frac{f(a) g^{\prime}(a)}{g(a)^{2}}
\end{array}\right. \\
& \text { reciperal } \\
& \text { rule }
\end{aligned}
$$

existance followt from Produrts / Reciparal \square
Roles. 11] - [8]
mean we can tuke dervatins of any rationd fonction

$$
R(x)=\frac{P(x)}{Q(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots b_{0}}
$$

Rrue

$$
f(x)=\frac{x^{2}+1}{x^{3}-2 x}
$$

Theoon (Chain Rable)
Iet g be diffrentinde at a $\& f$ be difbreatichle at $g(a)$. Then $f \circ g$ is ditterentiable (4
woth
[Rule 9] $(f \circ f)^{\prime}(a)=g^{\prime}(a) f^{\prime}(g(a))$

$$
\text { re. } \cos _{2} \frac{d}{\lambda x}(g(x))^{-1}=f(x)\left(-g\left(x^{-2}\right)\right)
$$

Fnoof Shetch

$$
\begin{aligned}
& (f \circ g)^{\prime}(a)=\lim _{h \rightarrow 0} \frac{(f f f(a+h)-(f \circ f)(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(f(a+h))-f(g(n))}{h}=\nRightarrow \\
& A=\lim _{h \rightarrow 0}\left(\frac{f(g(a+h))-f(g(a))}{2} \times \frac{g(a+h)-g(a)}{g(a+h)-g(a)}\right) a^{g(a) \neq g(a+h)} \\
& =\lim _{h \rightarrow}(\underbrace{\left(\frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)}\right.}_{f^{\prime}(g(a))}-\underbrace{\frac{g(a+h)-g(a)}{h}}_{g^{\prime}(a)}) \\
& =g^{\prime}(a) \cdot \lim _{h \rightarrow 0} \frac{f(g(w+h))-f(g(a))}{g(a+h)-g(a)} \\
& \text { let } k=g(a+h)-g(a)
\end{aligned}
$$

$$
\begin{aligned}
& k \rightarrow 0 \text { as } h \rightarrow 0 \quad b / c \quad g(a) \text { is canthus } \\
& A=g^{\prime}(h) \cdot \lim _{k \rightarrow 0} \frac{f(g(a)+h)-f(g(a))}{k}=g^{\prime}(a) \cdot f^{\prime}(g(a)) D
\end{aligned}
$$

Proof

$$
\Phi(h)= \begin{cases}\frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)} & \text { if } g(a h) \neq g(a) \\ f^{\prime}(g(a)) & \text { if }\end{cases}
$$

Claim: $\frac{f(g(a+h)-f(g(a))}{h}=\phi(h) \cdot \frac{g(a+h)}{h}$

Claim 2: $\phi(h) \rightarrow f^{\prime}(g(a))$ as $h \rightarrow 0$

If 1 and 2 are true then $(f \circ g)$

The (thai Rule) Let q be differentiable at a and t dittereatiable at $g(a)$
Then fog is differentiable al a with

$$
(f \circ q)^{\prime}(a)=f^{\prime}(g(a)) \cdot g^{\prime}(a)
$$

Prof

$$
\Phi(h)= \begin{cases}\frac{f(f(a+h))-f(g a))}{g(a+h)-g(a)} & \text { if } g(a+h) \neq g(a) \\ f^{\prime}(g(a)) & \text { if } g(a+h)=g(a)\end{cases}
$$

clain(1) $\frac{f(q(a+h))-f(g(a))}{h}=\Phi(h) \cdot \frac{g(a+h)-g(a)}{h}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Poor } \quad g(a+h) \neq g(a) \\
\lim _{1 i \cos 1} \text { IHs } \frac{f(g(a+h))-f(g(a))}{h} \quad \overbrace{\frac{g(a+h)-g(a)}{g(a+h)-g(a)}}^{1}
\end{array} \\
& =\frac{f(q(a+h))-f(g(a))}{g(a+h)-g(a)} \cdot \frac{f(a+h)-g(a)}{h}=\text { HS }
\end{aligned}
$$

(lii) $\quad q(a+h)=g(a)$

$$
\underset{\substack{\text { causer } \\ \text { chis }}}{ } \text { HHS: }=-\frac{f(g(a)-f(g(a))}{2}=0
$$

RMS: $\quad f^{\prime}(g(a)) \cdot \frac{f(a)-g(a)}{h}=0$
Claim 2
we need to shew
$\operatorname{cose} \quad \forall \varepsilon>0 \exists \sigma>0$ st. $0<|h|<\sigma \Rightarrow \mid \Phi(h)-f(g(c a) \mid<\varepsilon$
case $\forall \varepsilon>0 \quad \exists \delta>0$ st. $0<|h|<\delta \Rightarrow \mid \Phi(h)-f^{\prime}(g(a) \mid)<\varepsilon$

$$
\begin{aligned}
& \qquad \text { if } g(a+h)=q(a) \quad \mid \Phi(h)-f^{\prime}\left(g (a) \left|=\left|f^{\prime}(g(a))-f^{\prime}(g(a))\right|=0<\varepsilon\right.\right. \\
& \text { calle } g(a+h) \neq g(a) \\
& \forall \varepsilon>0, \exists \sigma_{0}>0 \text { s.t. } \left.\quad 0<\left|h k<\overrightarrow{l^{\prime}} \Rightarrow\right| \frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)}-f^{\prime}(g(a)) \right\rvert\,<\varepsilon \\
& f^{\prime}(g(a))
\end{aligned} \begin{aligned}
& \Rightarrow \lim _{k \rightarrow 0} \frac{f(g(a)+k)-f(g(a))}{k}=f(g(a)) \\
& \Rightarrow\left|\frac{f(g(a)+k)-f(g(a))}{k}-f^{\prime}(g(a))\right|<\varepsilon
\end{aligned}
$$

Recall $g(a)$ is differentiable
$\Rightarrow g(a)$ is continuous
thes $g(a+h) \rightarrow g(a)$ as a

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=g(a) & \Rightarrow \lim _{h \rightarrow 0} g(a+h)=g(a) \\
& \therefore \exists B_{2}^{1}>0 \text { s.t. } 0<|h|<0_{2} \\
\Rightarrow & \left|\frac{g(a+h)-g(a)}{}\right| \sum_{1} \Rightarrow\left|\frac{f(g(a)+g(a+h)-g(a))-f(g(a))}{g(a+h)-g(a)}-f(g(a))\right|<\varepsilon \square
\end{aligned}
$$

Role of differentbation
$1 \quad f(x)=c \in \mathbb{R} \Rightarrow f^{\prime}(x)=0$
[2 $f(x)=x \Rightarrow f^{\prime}(x)=1$
3] $\left.f(x)=g(x)+h(x) \Rightarrow f^{\prime}(x)=g^{\prime}(x)+h^{\prime}(x)\right\}_{1 \text { men } x^{\prime},}$
4 (4) $f(x)=c \circ g(x)^{\text {to }} C \in \mathbb{R} \Rightarrow f^{\prime}(x)=c \cdot g(x)$ bt dean.
5 $f(x)=x^{n}$ fow $n \in \mathbb{N} \Rightarrow f^{\prime}(x)=n x^{n-1}$ pare nole
(6) $f(x)=g(x) h(x) \Longrightarrow f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x) \quad$ Frownt Rete
[6] $f(x)=g(x) h(x) \Longrightarrow f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)$ Frount rext
$77 f(x)=1 / g(x) \Rightarrow f^{\prime}(x)=-g^{\prime}(x) / g(x)^{2}$
$8 \quad f(x)=\frac{g(x)}{h(a)} \Rightarrow f^{\prime}(x)=g(x) / h(x)=\frac{g(x) h^{\prime}(x)}{h(x)^{2}}$
(Chum Ro |e] $f(x)=g(h(x)) \Rightarrow f^{\prime}(x)=h^{\prime}(x) g^{\prime}(h(x))$
Trig

$$
\begin{aligned}
\frac{d}{d x} \sin (x) & =\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\cos (x) \sin (h)-\sin (x)}{h} \\
& =\sin (x) \lim _{h \rightarrow 0}\left(\frac{\cos (h)-1}{h}\right)+\cos (x) \lim _{h \rightarrow 0}\left(\frac{\sin (h)}{h}\right)=\cos (x)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{0}{2} \int \quad \frac{d}{d x} \cos =\frac{d}{d x} \sin (x+\pi / 2) \\
& \stackrel{\int}{c} \frac{d}{d x}(x+\pi / 2) \cos (x+\pi / 2)=-\sin (x) \\
& \frac{d}{d x} \tan (x)=\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right)=\frac{\cos (x) \cdot \cos (x)+\sin (x) \sin (x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)}=\sec ^{2}(x) \\
& \ldots e^{i x}=\cos (x)+i \sin (x), e^{i \pi}=-1
\end{aligned}
$$

Chapter 11 - Significance of Derivative Monday, April 10, 2023
Chapter 11-Significane of the Derivative

$$
f^{\prime}(x)=0
$$

Definition : let $f: D \rightarrow \mathbb{R}$ and $A \subseteq D$
a point $x \in A$ is said to be a maximum point of f on A if $f(x) \geqslant f(y)$ for all $y \in D$

The number $f(x)$ is called the Maximum Value of fon A
Derv Let $f^{\prime}, p \rightarrow \mathbb{R}$ and $A \subseteq D$ pt $x \in A$ is a minimum point of a function on a domain (or f on A) if $f(x) \leqslant f(y) \quad \forall y \in A$
(given a f and A : maximan valves are unique maximum points are not chigere

$\min : \mathbb{C}^{c}$ - Irraticenal
Max: 束, - Ratrual

$$
\begin{aligned}
& 1 \int_{0} f(x)=x \\
& f(x)=\left\{\begin{array}{lll}
0 & x \in \mathbb{Q}^{c} & x, 1) \Rightarrow \text { max monn } \\
|x| & x \in \mathbb{R} & \ddots
\end{array}, 1, \quad\right. \text { moax } \\
&
\end{aligned}
$$

maximu/
minimom
point
local maximun prisimm

Doef not have to have a max or min

Extreme value The if f is cuntino $a_{n}[a, b] \Rightarrow \exists \max \mathbb{C} \min$

Th~M
Let $f: D \rightarrow \mathbb{R}$ and $(a, b) \subseteq D$
If x is a local mus/min for f on (a, b)
and f is ditterentiable at x, then $f^{\prime}(x)=0$
bimper $\quad f_{-}^{\prime}(x)=f_{+}^{\prime}(x)=0$

R reest
Let x be a local max
real

$$
\begin{aligned}
& \Rightarrow f(x) \geqslant f(y) \\
& \Rightarrow \quad f(y)-f(x) \leq 0 \quad \forall y \in(a, b)
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{y+x} \frac{f(y)-f(x)}{y-x}
$$

suppose

$$
\begin{aligned}
& y<x \Longleftrightarrow y-x<0 \\
\Rightarrow & \frac{f(y)-f(x)}{y-x} \geqslant 0 \\
\Rightarrow & \lim _{f \rightarrow x}-\frac{f(y)-f(x)}{y-x} \geqslant 0
\end{aligned}
$$

Supper $y>x \Longleftrightarrow y-x>0$

$$
\begin{aligned}
& \Rightarrow \frac{f(y)-f(x)}{y-x} \leq 0 \\
& \Rightarrow \lim _{y+x^{+}} \frac{f(y)-f(x)}{y-x} \leq 0
\end{aligned}
$$

pitteventublich
allee do the some proof with flipped signs for the minimum prose

Destination of Left Right limits

$$
\Rightarrow \quad f^{\prime}(x)=f_{-}^{\prime}(x)=f_{+}^{\prime}(x)=0
$$

Let $f: D \rightarrow \mathbb{R}$ and $A \leq D$
$x \in A$ is a max $/ \min$ of f in n

$$
\begin{aligned}
& f(x) \geqslant f(y) \quad \forall y \in R \\
& (f(x) \leq f(y)) \quad \forall y<n
\end{aligned}
$$

$x \in A$ is a local max ar (mn) of f in A it

$$
\begin{aligned}
& f(x) \geqslant f(y) \quad \forall y \in A \cap(x-\delta \quad x+\zeta) \\
& (f(x) \leqslant f(y)) \because \cdots
\end{aligned}
$$

 is defined on (a, b) and differentiable at x
$\Rightarrow x$ is a critical point

Deft- a point x is culled critical point of f it $f^{\prime}(x)=0$ The value $f(x)$ is called a Critiod value
(1) a function cools not be differentialal a maximin $\lg f(x)=|x|$

(2) a function could have a maxi min at the edge points if defined on a dosed set

$$
\begin{aligned}
& f(x)=x \\
& x \in[\theta, 1]
\end{aligned}
$$

(3) $f^{\prime}(x)=0$ does not imply focal max ar min

Eg, $f(x)=x^{3}$

$$
f^{\prime}(0)=0
$$

How to fond max and min
Step (1) Find the critical pouts II edges
Step (2) Find all the points $x \in(a, b)$ where of is not differentidile

Step (3) Evaluate function (2) (1) \& (2) on (a, b) and write down biggest to smallest

Try: $f(x)=2 x^{3}-3 x^{2}-12 x+1$ on $[-2,3]$

Theorem (Roller's Then)

If f is continuous on $[a, b]$ and differentiable on (a, b) and $f(a)=f(b)$ then there exist o an $x \in(a, b)$ st. $f^{\prime}(x)=0$

notice is not smooth

Proof
EV.I. ${ }_{\sigma} f$ is continuous on $[a, b]$ then It has a max \& mir on $[a, 12]$
let these be $x_{\text {man }}, x_{\text {max }} \in[a, 1$,
F-T if f is differentiable at $x_{\operatorname{man}} / x_{\max } \in(a, b)$ then $f^{\prime}\left(x_{\text {mm }}\right)=f^{\prime}\left(x_{\text {max }}\right)=0$

VT $\Rightarrow x_{\max }, x_{\min } \in[ム, L]$ and exist
Case (1) $X_{\text {max }} t(a, b)$
then $F T \Rightarrow f^{\prime}($ max $)=0$
The $x=x_{\text {max }}$
Cause (2) $x_{\min } \in(a, b)$
then FT $\Rightarrow f^{\prime}\left(x_{\text {min }}\right)=0$
Tare $x \Rightarrow k_{\text {min }}$

Tare $x \Rightarrow k_{\text {min }}$
Inge (3) $x_{\text {max }}=a$ or $b \& x_{\text {min }}=a$ or b

$$
\begin{array}{r}
\Rightarrow f\left(x_{\text {max }}\right)=f(a)=f(b)=f\left(x_{\text {min }}\right) \Rightarrow f=f(a) \quad \forall x \\
\Rightarrow f^{\prime}(x)=0 \quad \forall x \in(a, b), \therefore=\text { choose any } x \\
x=\frac{b-a}{2}
\end{array}
$$

Theorem (Mean value Theorem)
If f is continuous on $[a, b]$ and differentiate b on (a, b) then there exists an $x \in[a, b]$ such that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{10-a}
$$

prod
I want to use Roles Th^{m} to show that

$$
\begin{aligned}
& f^{\prime}(x)=\frac{f(b)-f(a)}{b-a} \\
& \Leftrightarrow f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}=0
\end{aligned}
$$

let $h(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$

$$
\Leftrightarrow h^{\prime}(x)=0
$$

Consider $h(x)=f(x)-\frac{f(t)-f(a)}{b-a}(x-a)$

- Since f cont. on $[a, 10], h$ is cont an $[a, b]$
- Since f diff on $(a, b), h$ is diff on (a, b)

$$
\begin{aligned}
& h(a)=f(a)-\frac{f(b)-f(a)}{b-a}(a-a)=f(a) \\
& h(b)=f(b)-\frac{f(b)-f(a)}{b-a}(b-a)=f(a)
\end{aligned}
$$

So $h(a)=h(b)$ and Rollo: The hold,

$$
\Rightarrow \exists x \in(a, b) \text { st. } h^{\prime}(x)=0 \Rightarrow \text { result ba }
$$

The (mean Value theoren)
off f is cont. an $[a, b)$ and differentiable on (a, b) then $\exists x \in(a, b)$ s.t.

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

Quotient Role

$$
\left(\frac{f(a)+f(1)}{2}\right)^{\prime}=
$$

Corollary 1 af $f^{\prime}(x)=0 \quad \forall x \in[a, b]$
then $f=c \in \mathbb{R} \quad \forall x \in[a, b)$
proof
Consider $[c, d] \subseteq[a, b]$

$$
\begin{aligned}
& \text { WWI } \Rightarrow \exists x \in[c, d] \text { st. } f^{\prime}(x)=\frac{f(d)-f(c)}{d-c} \\
& \Rightarrow 0=\frac{f(d)-f(c)}{d-c} \Rightarrow f(d)=f(c)
\end{aligned}
$$

Since this hold $\forall[c, d] \leqslant[a, 10] \Rightarrow \&$ is constat on $[a, b]$
Cencellony 2

Cencelleng 2
If $f^{\prime}(x)=g^{\prime}(x) \quad \forall x \in[a, b]$
then $\exists c \in \mathbb{R}$ st. $f=g+c$
proof
Let $h=f-g \Rightarrow h^{\prime}(x)=0 \quad \forall x \in[a, b]$

$$
\begin{aligned}
& \Rightarrow \exists c \in \mathbb{R} \quad \text { st. } \quad n z \\
& \Rightarrow \quad f=g+c \quad \forall x \in[a, b]
\end{aligned}
$$

Defn $\quad f: P \rightarrow \mathbb{R}$ und $A \subseteq D$

(1) f is inconeasing on A if

$$
f(a)<f(b) \quad \forall a, b \in A \text { St. } a<h
$$

(2) f is decrcusing on A

$$
\text { if } f(a)>f(b) \quad \forall a, b \in A \text { St. } a<b
$$

Cavallay 3 Let $f: p \rightarrow \mathbb{R}$ and $(a, b) \subseteq 1$.
(1) If $f^{\prime}(x)>c \quad \forall x \in(a, b)$ then f encreasing or (a, b)
(2) If $f^{\prime}(x)<0 \quad \forall x \in(a, b)$ then f is decrasing on (a, b)
froe
Let $[c, d]<(a, b)$
Then $\exists x \in[c, d] \quad S t . f^{\prime}(x)=\frac{f(d)-f(c)}{\Delta-c}$
(1) $f^{\prime}(x)>0 \Rightarrow \frac{f(d) f(c)}{d-c}>0 \Rightarrow f(d)>f(c)$
\Rightarrow Encrusts
(2)

$$
\begin{aligned}
f^{\prime}(x)<0 \Rightarrow \frac{f(d) f(c)}{d-c}<0 \Rightarrow & f(d)<f(c) \\
& \Rightarrow \text { dec nosing }
\end{aligned}
$$

Since this hold $\forall[c, d]<(a, b) \ldots . \quad \square$

Corollary (4) (Second derivative test)
Suppose that $f^{\prime}(a)=0$
(D) If $f^{\prime}(a)>0$ then a is laced mas of f
(2) If $f^{\prime \prime}(a)<c$, then a is local mix of f

Pref

Pred
Defy $=f^{\prime \prime}(a)=\lim _{h \rightarrow c} \frac{f^{\prime}(a-h)-\underline{f^{\prime}(a)}}{h}$

Since $f^{\prime}(a)=0$

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f^{\prime}(a+h)}{h}
$$

$\forall \varepsilon>0, \exists \xi>0$ St.

$$
\begin{aligned}
0<|h|<z & \rightarrow\left|\frac{f^{\prime}(a+h)}{h}-f^{\prime}(a)\right|<\varepsilon \\
f^{\prime \prime}(a)-\varepsilon<\frac{f^{\prime}(a+h)}{h} & <f^{\prime \prime}(a)+\varepsilon
\end{aligned}
$$

To get a minimum we want $f^{\prime}(a+h)>0$ for hic $f^{\prime}(a+h)<C$ for $h<0$
Let $\varepsilon=f^{\prime \prime}(a)$

$$
\begin{aligned}
& \therefore \text { if }(h)<3 \Rightarrow \quad-3<h<Z \Rightarrow f^{\prime}(a+h)<0 \\
& \Rightarrow \frac{f^{\prime}(a+h)}{h}<2 f^{\prime}(a) \quad \Rightarrow f \text { is denotes } \\
& \int 0<h<\varepsilon \Rightarrow f^{\prime}(a+h)>0 \\
& \Rightarrow f \text { is inc. to the rich }
\end{aligned}
$$

$\forall V T$ cont.mars on $[a, b] \quad f(a)<y<f(b)$

$$
\Rightarrow \exists x \in(a, b) \text { st. } f(x)=y
$$

f Differentiable on $[a, b]$
Daboux's Thearen

$$
\begin{aligned}
& \text { If } f^{\prime}(a)<y<f^{\prime}(b) \\
& \Rightarrow \exists x \in(a, b) \text { s.t. } f^{\prime}(x)=y
\end{aligned}
$$

$y=0$

Thm 3*4

Sump Discorinten
Remarable Piscentinuity

Sinite number of canti.Derivarts measure Theary

Recall
1 Hopitals $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ is undefinced

$$
\text { then if } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x) \Longrightarrow \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g(x)}
$$

Therom (I'Höptal's Rule)/Bernullis (1964 swits) suppose that $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$
$\begin{array}{ll}\text { (4 Hopitaxs } \\ \text { suppose that } & \lim _{x+a} f(x)=\lim _{x \rightarrow a} g(x)=0\end{array}$
and the $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists.
them $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$ exits with $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$
proof
$\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists
\rightarrow (1) $f^{\prime}(x) \& g^{\prime}(x)$ exists for some interval $0<|x| x \mid<6$
(2) $g^{\prime}(x) \neq 0$ for $0<|x-a|<z$
note that f and o might be discontinues at a
Consides $F(x):=\left\{\begin{array}{cc}f(x) & x \neq a \\ 0 & x=a\end{array} \quad \forall \quad G(x):= \begin{cases}g(x) & x \neq 4 \\ 0 & x=a\end{cases}\right.$
Let $b \in(a, a+b)$

Then (1) F\&G are cont, on

$$
[a, b]
$$

(2) $F \propto G$ are diff. on (a, b)

Cauchy's UNT

$$
\begin{aligned}
& \stackrel{t}{\Rightarrow} \exists x \in[a, B \text { St. } \\
& {[G(b)-G(a)] F(x)=[F(b)-F(a)] G^{\prime}(x) } \\
\Rightarrow & \lim _{x \rightarrow 3^{+}} \frac{F(b)}{G(b)}=\lim _{x \rightarrow b^{+}} \frac{F^{\prime}(x)}{G^{\prime}(x)} \Rightarrow \text { Righted lout of }
\end{aligned}
$$

Example

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1 \quad \forall \varepsilon>0, z z>0 \text { st }|x|<z \Rightarrow\left|\frac{\sin (x)}{x}-1\right|<\varepsilon \\
& \lim _{x \rightarrow 0} \sin (x)= \lim _{x \rightarrow 0} x \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{\sin (x)}{(x)}=\lim _{x \rightarrow 0} \frac{\cos (x)}{1}=\lim _{x \rightarrow 0} \cos (x)=1 \\
& \forall \varepsilon>0, z z x 0 \text { st. } \\
&|x|<b \Rightarrow|\cos (x)-1|<\varepsilon
\end{aligned}
$$

Def- $f: P \rightarrow \mathbb{R}$ is cont. an $A \leq D$
$\forall y \in A \quad \forall \varepsilon>0 \quad \exists \delta>0$ st. $\forall x \in A$

$$
|x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon
$$

$\delta \mathrm{con}$ depart on ε and \qquad

Def: $f: D \rightarrow \mathbb{R}$ is Unitas Contmures an $A \leq 0$

$$
\begin{aligned}
\forall \varepsilon>0 & \exists \delta_{c} \quad S t . v y \in A \\
& |x-y|<\delta \Rightarrow|f(x)-f(y)|<\varepsilon
\end{aligned}
$$

3 can depend on E but not the other way around

$$
\begin{aligned}
f(x) & =2 x-1 \quad x \in \mathbb{R} \\
& \Rightarrow Z=\frac{\varepsilon}{2}
\end{aligned}
$$

uniform continues on $\mathbb{R}!$

$$
\begin{aligned}
f(x) & =x^{2} \quad x \in \mathbb{R} \\
& \Rightarrow z=\sqrt{|y|^{2}+\varepsilon} \quad-|y|>0
\end{aligned}
$$

continues on \mathbb{R}

Maybe there it a 3 independent of y far x
Assume there dos: Let $\varepsilon=1>0$
then there must exist a $己>0$

$$
\begin{aligned}
& \text { Set. } \forall x, y \in \mathbb{R} \quad|x-y|<己 \Rightarrow\left|x^{2}-y^{2}\right|<\varepsilon=1 \\
& \Psi \\
& x=\frac{1}{8} \\
& y=\frac{1}{2}-\frac{\delta}{2} \quad\left|\frac{1}{8}-\frac{1}{8}-\frac{\xi}{2}\right|<\delta \\
& \frac{z}{2}<z \\
& \Rightarrow\left|\frac{1}{8}^{2}-1+\frac{\delta^{2}}{4}\right|>1 \times \text { Contradreh }
\end{aligned}
$$

（1）$f(x)=x^{2}$ is unitarn cont．on $(0,4)$
Let $\varepsilon>0$ \＆$|x-y|<\delta$ \＆$x, y \in(0,4)$

$$
\left|x^{2}-y^{2}\right|=|x-y| \cdot|x+y|<8 \cdot|x+y|<8 己
$$

Since $x, y \in(0,4) \quad 0<x+y<8$
Let $\delta=\frac{\varepsilon}{\varepsilon}$ then $|x-y|<\frac{\varepsilon}{\delta} \Rightarrow\left|x^{2}-y^{2}\right|<\varepsilon$
（ $f(x)=x^{2}$ is Union cont．an $[-N, W] \quad \forall N>0$
Let $E>0,|x-y|<\delta \quad x, y \in[-w, w]$

$$
\begin{gathered}
\left|x^{2}-y^{2}\right|<z|x+y| \leq 2 w z \\
\Rightarrow \text { Chase } z=\frac{\varepsilon}{2 w}
\end{gathered}
$$

thus $\forall x, y \in[-N, w]$

$$
|x-y|<\frac{x_{2}}{2 w} \Rightarrow\left|x^{2}-y^{2}\right|<\varepsilon
$$

Uniform Cont. \Rightarrow Conl.
Theores of f is continuos on $[a, b]$ then f is Unifonly cant. on $[a, b]$
lemma-let $a<b \angle C$ and f unitarmly cont. on $[a, b]$ and $[b, c]$ then f is uniturnly cont. an [a.c]
proot let $\varepsilon>0$, there exists $a \quad B>0, z_{2}>0$ $s t$.
(1) $\forall x, y \in[a, b] \quad|x-y|<z_{1}^{\prime} \Rightarrow|f(x)-f(y)|<\varepsilon$
(2) $|x, y, y \in[b, c] \quad| x-y\left|<\delta_{2} \Rightarrow\right| f(x)-f(y) \mid<\varepsilon$
f is centinuos at b thos

$$
\begin{aligned}
& \exists z_{3}>0 \text { st. } \forall z \in[a, c] \\
& |z-b|<\xi_{3} \Rightarrow|f(z)-f(b)|<\frac{\varepsilon}{2} \\
& |f(x)-f(b)|<\frac{\varepsilon}{2} \\
& x, y \in\left(10-\xi_{3}, b+\xi_{3}\right) \Rightarrow|f(y)-f(b)|<\frac{\varepsilon}{2}
\end{aligned}
$$

tringle $\quad \because|f(x)-f(y)|=|f(x)-f(b)+f(b)-f(y)|<$ ineq-

$$
|f(x)-\delta(b)|+|f(y)-f(b)|<\varepsilon
$$

$$
\begin{aligned}
x \in[a, b], y \in[b, c] & \\
|x-y|<\sigma_{3} \Rightarrow & |x-6+6-y|<\sigma_{3} \\
& \Rightarrow 6-x+y-b<\sigma_{3}
\end{aligned}
$$

$$
\begin{array}{r}
\quad \Rightarrow \operatorname{li}_{>0}^{b-x}+\underbrace{y-b}_{>0}<z_{3} \\
\Rightarrow|b-x|<z_{3} \&|y-b|<z_{3} \\
\Rightarrow|f(x)-f(y)|<\varepsilon \\
\Rightarrow z=\min \left\{z_{1}, z_{2}, z_{3}\right\} \quad \text { warka }
\end{array}
$$

assure f is cont. on $[a, b]$ and $\varepsilon>c$
f is ε-good an $[a, b]$ if $\exists z>0$ s.t. $\forall x, y \in[a, b]$

$$
|x \cdot y|<\xi \Rightarrow|f(x)-f(y)|<\varepsilon
$$

If f is ε-goed $\forall \varepsilon>0$, then

Corsidn $A_{:}=\{C \in[a, b] \mid f$ is ε-gool on $[a, c]\}$

Axicu: off A is non-emply / bandel above then it has supremum
(1) it is nas-empty becurs aEA
(2) $C \in A \Rightarrow i t$ is bounder abue

$$
\alpha=\sin A
$$

attire $\&<C$ and use trichating
at C to prove E-preail on $[a, C+\xi]$

$$
\Rightarrow a c=1 \quad \text { prase } b \in \mathbb{L}
$$

Uniform Cont. \rightarrow Cont.

$$
\text { cont. } \Rightarrow \text { uniform cont. }[a, b]
$$

Lipschitz Continuity

$$
\begin{aligned}
& \exists k>0 \text { s.t. } \quad \forall x, y \in A \\
& |f(x)-f(y)|<k|x-y|
\end{aligned}
$$

Recall Def A function is a set of pairs with property of $(a, b) \&(a, c)$ are in the function then $b=c$

$$
a=\alpha \Rightarrow f(a)=f(\alpha) \quad f: A \rightarrow B \text { or }(a, b), u c A, b \in B
$$

Def a functor f is
(1) infective (one-10-ane) if $f(a)=f(s) \Rightarrow a=a$
(2) Surjectie (alto) $f(a)=B$

Def Liven a function f, the inverse f^{-1} is defined as set of pains (a, b) sot- (b, a) is in f

$$
\Rightarrow f^{-1}(a)=b \text { if } f(b)=a
$$

The $1 f^{-1}$ is a function $\Leftrightarrow f$ is $1-1$
prod
assume 1-1
Suppose $(a, b) \&(a, c)$ are in f^{-1}
$\Rightarrow(b, a) \&(c, a)$ are in f
\Rightarrow Since $1-1 \quad b=c$ a
\Rightarrow austere f^{-1}
$f: A \rightarrow B$ and f is injective

$$
f^{-1}: f(A) \rightarrow A
$$

$$
\left.\begin{array}{ll}
f: f(A) \rightarrow A & \\
\mathbb{H}^{\prime \prime}: \mathbb{R} \rightarrow \mathbb{R} & \text { Let } x \in A \\
\|(x)=x & f^{-1}(f(x))=x \\
& f^{\prime-1} \circ f=1 \text { on } \operatorname{Dom}(f)
\end{array} \right\rvert\, \begin{aligned}
& f\left(f^{-1}(x)\right)=x \\
& f^{\prime \prime} \circ f^{-1}=\mathbb{L}_{\text {an }} \operatorname{In} g(t)
\end{aligned}
$$

Them 2
off f is continuous and $1-1$ on $[a, 1]$
then f is either increasing XOR decreasing, on $[a, b]$

The 3: Af f is continual are $1-1$ on $[a, b]$ then f^{-1} is continuars

The 4 off f os continuous and $1-1$ on $\left[[a, b]\right.$ and $f^{\prime}\left(f^{-1}(x)\right)=0$
then f^{-1} is WOT differaturbe ωx

Th 5 if f is cont. and $1-1$ on $[a, b]$ and f is differentiable $\in f^{\prime \prime}(x)$
with $\left(f^{-1}(x)\right) \neq 0$ then f is differentiable
(a) x with

$$
\left(f^{-1}\right)^{*}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \quad\left\{\frac{d y}{d x}=\frac{1}{d x} \frac{d y}{d y}\right.
$$

If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$ for $n \in \mathbb{Z}$
Consider $x \times 0$
Then

$$
\begin{aligned}
& f^{-1}(x)=x^{\frac{1}{n}} \text { is a finch } \\
& \text { on } x \geqslant 0 \text { is differentiable }
\end{aligned}
$$

Boy Th a 3

$$
\begin{aligned}
{\left(f^{-1}\right)}^{3}(x)=\frac{1}{f^{\prime}\left(f^{\prime}(x)\right)} & =\frac{1}{n\left(x^{\frac{1}{n}}\right)^{n-1}} \\
& =\frac{1}{n} x^{\frac{1}{n}-1}
\end{aligned}
$$

Thus

$$
x \geqslant 0 \text { elf } f(x)=x^{a} \text { then } f^{\prime}(x)=a x^{a-1}
$$

for $a \in \mathbb{Z}$ or $\frac{1}{a} \in \mathbb{Z}$
of

$$
\begin{aligned}
f(x) & =x^{p / q} \text { for } p, q \in \mathbb{Z} \\
& =\left(x^{1 / 2}\right)^{p} \\
\text { cha.nrule } & =\frac{1}{a} x^{\frac{1}{q}-1} \cdot p \cdot\left(x^{\frac{1}{q}}\right)^{p-1}=\frac{p}{q} x^{p / q}-1
\end{aligned}
$$

Def n:
Let $f:[a, b] \rightarrow R$ be a bounded function and $P:=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$. We define...
1.) Lower Rieman sum:
$L(f, P)=\sum_{i=0}^{n} m_{i}\left(t_{1}-t_{\{i-1\}}\right)$
2.) Upper Rieman sum:
$U(f, P)=\sum_{i=0}^{n} M_{i}\left(t_{1}-t_{\{i-1\}}\right)$

Where
$m_{i}=\operatorname{Inf}\left\{f(x): t_{i-1} \leq x \leq t_{i}\right\}$
$M_{i}=\operatorname{Sup}\left\{f(x): t_{i-1} \leq x \leq t_{i}\right\}$

$$
\begin{aligned}
& \text { Given a partition } \\
& \qquad m_{i} \leq m_{i} \Rightarrow L(f, p) \leq U(f, p)
\end{aligned}
$$

Coma: If $P \& Q$ are partitions of $[a, b]$
st. $P \subseteq Q$ and f is bounded on $[a, b]$
then

$$
\begin{aligned}
& \mathcal{L}(f, P) \leqslant \mathcal{L}(f, Q) \\
& \mathcal{L}(f, P) \geqslant U(f, Q)
\end{aligned}
$$

Wednesday, April 26, 2023

1.) $L(f, P) \leq U(f, P)$
2.) $L(f, P) \leq L(f, Q)$ when $P \subseteq Q$
3.) $U(f, P) \geq U(f, Q)$ when $P \subseteq Q$

Theorem,
Let P_{1} and P_{2} be paritions of $[a, b]$ and f bounded on $[a, b]$ Then.

$$
\begin{aligned}
& L\left(f, P_{1}\right) \leq U\left(f, P_{2}\right) \\
& L\left(f, P_{2}\right) \leq U\left(f, P_{1}\right)
\end{aligned}
$$

Proof
Let $P=P_{1} \cup P_{2}$, then $P_{1} \subseteq P_{2} \subseteq P$

$$
\begin{aligned}
& \therefore L\left(f, P_{1}\right) \leq L(f, P) \leq U(f, P) \leq U\left(f, P_{2}\right) \\
& \quad \begin{array}{|l|l|}
\hline \text { (2) } & \text { (1) }
\end{array}
\end{aligned}
$$

Corollary: If f is bounded on $[\mathrm{a}, \mathrm{b}]$ then
$\operatorname{Sup}\{L(f, P): P$ is a partition of $[a, b]\} \leq \operatorname{In} f\{U(f, P): P$ is a parition of $[a, b]\}$

$$
\operatorname{Sup}(L(f, P)) \leq \operatorname{Inf}(U(f, P))
$$

Definition:
Let $f:[a, b] b e$ a bounded function
f is integrable on $[a, b]$ is:
$\alpha=\operatorname{Sup}(L(f, P))=\operatorname{Inf}\{U(f, P)\}$
In this case the integral of f on $[a, b]$ is
$\int_{a}^{b} f=\alpha$
Properties:
For all parititions P of $[a, b]$
1.) $L(f, P) \leq \int_{a}^{b} f \leq U(f, P)$
2.) $\int_{a}^{b} f$ is unique (if it exists)

Theorem: If f is bounded on $[a, b]$ then f is integrable on $[a, b]$ if and only if $\forall \epsilon>$ 0 there exists a partion P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$

Example

Prove that $\int_{a}^{b} c \cdot d x=c \cdot(b-a)$

Consider $f(x)=x$ for $x \in[a, b]$

Is $f(x)$ integrable on $[a, b]$? it is bounded as $a \leq f(x) \leq b$, and non empty What is $\int_{a}^{b} f=$?

Proof
Let $\epsilon>0$ and. $P:=\left\{0, t_{1}, t_{2}, \ldots, t_{n-1}, b\right\}$ be a partition
Aim: find $\left\{t_{1}, t_{2}, \ldots t_{n-1}\right\}$ such that $U(f, P)-L(f, P)<\epsilon$

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}\right)\left(t_{i}-t_{i-1}\right)-\sum_{i=1}^{n}\left(m_{i}\right)\left(t_{i}-t_{i-1}\right)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)
$$

For $f(x)=x$

$$
\begin{aligned}
& m_{i}=\operatorname{Inf}\left\{x: t_{n-1} \leq x \leq t_{i}\right\}=t_{i-1} \\
& M_{i}=\operatorname{Sup}\left\{x: t_{n-1} \leq x \leq t_{i}\right\}=t_{i-1} \\
& U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)^{2}<\epsilon=\left(t_{1}-t_{0}\right)^{2}+\left(t_{2}-t_{1}\right)^{2}+\ldots+\left(t_{n}-t_{n-1}\right)^{2}
\end{aligned}
$$

Then Lets assume that parition is uniform for example $t_{i}=\frac{b}{n} i$ then

$$
U(f, P)-L(f, P)=\sum_{i=1}^{n} \frac{b^{2}}{n^{2}}=\frac{b^{2}}{n}<\epsilon
$$

Motivation show
differentiable \Rightarrow continuous \Rightarrow Inter able

Idea: Let $\epsilon>0$
We want to find a partition

$$
\begin{gathered}
P:=\left\{t_{0}, \quad \cdots, \quad t_{n}\right\} \text { s.t. } \\
U(f, P)-L(f, P)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)<\epsilon
\end{gathered}
$$

Since
f is continuous an

$$
\left[t_{i-1}, t_{i}\right]
$$

Such that $f\left(x_{i}\right)=m_{i}$

$$
\varepsilon V_{T} \Rightarrow \exists x_{i}, y_{i} \in\left[t_{i-1}, t_{i}\right]
$$

Goal find the partition.

$$
f\left(y_{i}\right)=M_{i}
$$

$$
\left.\left|y_{i}-x_{i}\right| \leq t_{i}-t_{i-1}<\right\}
$$

$$
\Rightarrow\left|f\left(y_{i}\right)-f\left(x_{i}\right)\right|<\hat{\varepsilon} \quad \begin{gathered}
\text { choosing } \\
\text { partition }
\end{gathered}
$$

$$
\underset{\substack{\text { bnforly, } \\ \text { untrod } \\ \text { int }}}{\pi} \Longleftrightarrow M_{i}-m_{i}<\hat{\varepsilon}
$$

$$
\begin{aligned}
\Rightarrow & \cup(f, p)-\mathcal{L}(t, p) \\
& -\stackrel{n}{\Rightarrow} \mathrm{~km} . \quad 11,1 / \hat{S} \bar{p}_{-}^{n}\left(t_{i}-t_{i-1}\right)=\hat{\varepsilon}\left(t_{n}-t_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{i=1}^{n}\left(m_{i}-m_{i}\right)\left(t_{i}-t_{i-1}\right)<\hat{\sum} \sum_{i=1}^{n}\left(t_{i}-t_{i-1}\right)=\hat{\sum}\left(t_{n}-t_{0}\right) \\
&=\hat{\sum}(b-a) \\
& \text { telescopes } \\
& \text { Sum }
\end{aligned}
$$

For $\hat{\varepsilon}=\frac{\varepsilon}{b-a}$ it we choose $P=\left\{t_{0}, \ldots, t_{n}\right\}$
Such that $t_{i}-t_{i-1}<z$ then

$$
U(f, p)-\mathcal{L}(f, p)<\hat{\varepsilon}(b-a)=\varepsilon
$$

\Rightarrow Integrable by the

Theorem Let $a<b<c$
If f is integrable on $[a, b] \&[b, c]$ and vire versa

Theovern (Linearity of integrals)
If f and of are integrable on $[a, b]$ and $c \in \mathbb{R}$ then:
(1) $f+g$ is inteyable on $[a, b]$ with

$$
r^{b} \ldots 1^{16}+\ldots 1^{16}
$$

$$
\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g
$$

(2) Cot is integrable on $[a, 1 b]$ with

$$
\int_{a}^{b} c \cdot f=c \cdot \int_{a}^{b} f
$$

Theorem
Let f be integrable on $[a, b]$ and say

$$
m \leqslant f(x) \leqslant M \quad \forall x \in[a, b]
$$

then

$$
m(b-a) \leq \int_{a}^{b} f \leq M(b-a)
$$

proof
\forall partition P!

$$
\begin{aligned}
& L(f, p) \leq \int_{a}^{b} f \leq V(f, p) \\
& \text { Let } p=\{a, b\}
\end{aligned}
$$

Theorem if f is integrable on $[a, b]$ and we define $F(x)=\int_{a}^{x} f$ then F is continuous on $[a, b]$

$$
f(x)=\left\{\begin{array}{ccc}
1 & 1<x \leq 2 & 2 f^{f(x)} \\
1 / 2 & x=1 & 0 \\
0 & 0 \leq x<1 & 1 \underbrace{}_{0} \\
0 & 1
\end{array}\right.
$$

$$
\begin{aligned}
& F(x)=\int_{0}^{x} f \\
& \quad \Rightarrow F(x)=\int_{0}^{x} 0=0
\end{aligned}
$$

if $1 \leq x \leq 2$ then $f(x)=1$

$$
\Rightarrow F(x)=\int_{0}^{x} f=\int_{0}^{1} 0+\int_{1}^{x} 1=x-1
$$

